zoukankan      html  css  js  c++  java
  • 调参贝叶斯优化(BayesianOptimization)

    from sklearn.datasets import make_classification
    from sklearn.model_selection import cross_val_score
    from sklearn.ensemble import RandomForestClassifier as RFC
    from sklearn.svm import SVC
    
    from bayes_opt import BayesianOptimization
    from bayes_opt.util import Colours
    
    
    def get_data():
        """Synthetic binary classification dataset."""
        data, targets = make_classification(
            n_samples=1000,
            n_features=45,
            n_informative=12,
            n_redundant=7,
            random_state=134985745,
        )
        return data, targets
    
    
    def svc_cv(C, gamma, data, targets):
        """SVC cross validation.
        This function will instantiate a SVC classifier with parameters C and
        gamma. Combined with data and targets this will in turn be used to perform
        cross validation. The result of cross validation is returned.
        Our goal is to find combinations of C and gamma that maximizes the roc_auc
        metric.
        """
        estimator = SVC(C=C, gamma=gamma, random_state=2)
        cval = cross_val_score(estimator, data, targets, scoring='roc_auc', cv=4)
        return cval.mean()
    
    
    def rfc_cv(n_estimators, min_samples_split, max_features, data, targets):
        """Random Forest cross validation.
        This function will instantiate a random forest classifier with parameters
        n_estimators, min_samples_split, and max_features. Combined with data and
        targets this will in turn be used to perform cross validation. The result
        of cross validation is returned.
        Our goal is to find combinations of n_estimators, min_samples_split, and
        max_features that minimzes the log loss.
        """
        estimator = RFC(
            n_estimators=n_estimators,
            min_samples_split=min_samples_split,
            max_features=max_features,
            random_state=2
        )
        cval = cross_val_score(estimator, data, targets, scoring='neg_log_loss', cv=4)
        return cval.mean()
    
    
    def optimize_svc(data, targets):
        """Apply Bayesian Optimization to SVC parameters."""
    
        def svc_crossval(expC, expGamma):
            """Wrapper of SVC cross validation.
            Notice how we transform between regular and log scale. While this
            is not technically necessary, it greatly improves the performance
            of the optimizer.
            """
            C = 10 ** expC
            gamma = 10 ** expGamma
            return svc_cv(C=C, gamma=gamma, data=data, targets=targets)
    
        optimizer = BayesianOptimization(
            f=svc_crossval,
            pbounds={"expC": (-3, 2), "expGamma": (-4, -1)},
            random_state=1234,
            verbose=2
        )
        optimizer.maximize(n_iter=10)
    
        print("Final result:", optimizer.max)
    
    
    def optimize_rfc(data, targets):
        """Apply Bayesian Optimization to Random Forest parameters."""
    
        def rfc_crossval(n_estimators, min_samples_split, max_features):
            """Wrapper of RandomForest cross validation.
            Notice how we ensure n_estimators and min_samples_split are casted
            to integer before we pass them along. Moreover, to avoid max_features
            taking values outside the (0, 1) range, we also ensure it is capped
            accordingly.
            """
            return rfc_cv(
                n_estimators=int(n_estimators),
                min_samples_split=int(min_samples_split),
                max_features=max(min(max_features, 0.999), 1e-3),
                data=data,
                targets=targets,
            )
    
        optimizer = BayesianOptimization(
            f=rfc_crossval,
            pbounds={
                "n_estimators": (10, 250),
                "min_samples_split": (2, 25),
                "max_features": (0.1, 0.999),
            },
            random_state=1234,
            verbose=2
        )
        optimizer.maximize(n_iter=10)
    
        print("Final result:", optimizer.max)
    
    
    if __name__ == "__main__":
        data, targets = get_data()
    
        print(Colours.yellow("--- Optimizing SVM ---"))
        optimize_svc(data, targets)
    
        print(Colours.green("--- Optimizing Random Forest ---"))
        optimize_rfc(data, targets)
    
    
  • 相关阅读:
    32位和64位系统区别及int字节数
    C++默认参数不能是一个引用
    sprintf的缓冲区溢出
    linux之cp/scp命令+scp命令详解
    linux文件属性详细说明
    linux tar打包
    sed命令
    常用linux命令
    C++ 类T T t;构造时分配的内存在静态数据区 T t=new T()分配的内存在堆 这样说对吗
    Dom事件的三种绑定方式
  • 原文地址:https://www.cnblogs.com/chenxiangzhen/p/10636896.html
Copyright © 2011-2022 走看看