zoukankan      html  css  js  c++  java
  • 【CCPC-Wannafly Winter Camp Day4 (Div1) D】欧拉回路(分类讨论)

    点此看题面

    大致题意: 有一个(n)(m)列的网格图,让你给每一条边设置一个通过次数((ge1)),使其成为欧拉回路,且通过次数总和最小。

    初始化

    首先,由于通过次数(ge1),因此首先必然设置每条边通过次数为(1)

    对于一个(n)(m)列的网格图,共有(n(m-1)+m(n-1))条边,如下图:

    所以,初始化(ans)(n(m-1)+m(n-1))

    仔细观察上图,可以发现,中间的点以及四个角落的点都为偶点,因此只需给边上的点连边,使其全为偶点即可。

    但又需要分类讨论。

    (n,m)都为偶数时

    如图所示:

    考虑将两条邻边作为一组。

    则我们可以将同一组中两条边的交点向旁边两点连边,这样交点仍为偶点,而交点旁边这两个点也变成了偶点。

    这样每条边上剩下的奇点个数就为偶数了。

    则我们依然对相邻的两点之间连一条边,这样就可以使所有点都变成偶点了。

    加的边数为:

    [2(frac{n-2}2+frac{m-2}2)=n+m-4 ]

    (n,m)都为奇数时

    如图所示:

    考虑将两条邻边作为一组。

    则我们可以将同一组中两条边的交点向旁边两点连边,这样交点仍为偶点,而交点旁边这两个点也变成了偶点。

    这样每条边上剩下的奇点个数就为偶数了。

    则我们依然对相邻的两点之间连一条边,这样就可以使所有点都变成偶点了。

    加的边数为:

    [2(frac{n-3}2+frac{m-3}2)+4=n+m-2 ]

    (n,m)一奇一偶时

    如图所示(假设(n)为奇数,(m)为偶数):

    我们把两条奇数边靠同一边的一个点一起向角上的点连边,然后剩下的(n-3)个点在相邻的两点之间连一条边。

    其中被连过边的角上两点变成奇点,因此需向这条偶数边上两侧的点连一条边。此时这条边上剩下的(m-4)个点再在相邻的两点之间连一条边。

    然后可以发现还有一条边上始终没有连过边,则直接在相邻的两点之间连一条边即可。

    加的边数为:

    [2*frac{n-3}2+frac{m-4}2+frac{m-2}2+4=n+m-2 ]

    不难发现(m)为奇数,(n)为偶数时同理。

    (n=2)(m=2)

    上面的分类讨论看似包含了所有情况,实则还有一种特殊情况没有考虑,即(n=2)(m=2)时。

    如图所示:

    不难发现,(n)(m)若有一个为(2),则另一边的点可以与对边上的点两两相连。

    加的边数为:

    [n-2 or m-2 ]

    总结

    因此,对于给定的(n)(m),先初始化(ans)(n(m-1)+m(n-1))

    接下来,特判(n=2)(m=2)的情况。

    然后分奇偶性讨论,从上面的分析可以发现,在有至少一个奇数时加边数为(n+m-2),若皆为偶数则加边数可以减(2)

    具体实现见代码。

    代码

    #include<bits/stdc++.h>
    #define Tp template<typename Ty>
    #define Ts template<typename Ty,typename... Ar>
    #define Reg register
    #define RI Reg int
    #define Con const
    #define CI Con int&
    #define I inline
    #define W while
    using namespace std;
    int n,m;
    int main()
    {
    	scanf("%d%d",&n,&m);RI ans=n*(m-1)+m*(n-1);//读入+初始化ans
    	if(n==2) return printf("%d",ans+m-2),0;if(m==2) return printf("%d",ans+n-2),0;//特判n=2或m=2的情况
    	return ans+=n+m-2,!(n&1)&&!(m&1)&&(ans-=2),printf("%d",ans),0;//考虑一般情况,分奇偶性讨论
    }
    
  • 相关阅读:
    鲲鹏服务器测试
    缓存区溢出实验
    读书笔记
    《信息安全系统设计与实现》学习笔记9
    改进ls的实现
    团队作业(四):描述设计
    《需求规格书》修订版
    反汇编测试
    《信息安全系统设计与实现》学习笔记8
    stat命令的实现-mystat
  • 原文地址:https://www.cnblogs.com/chenxiaoran666/p/CometOJDay4Div1D.html
Copyright © 2011-2022 走看看