思维
这道题应该算是一道思维题吧。
首先你要想到,既然这是一棵无根树,就要明智地选择根——以第一个黑点为根(不要像我一样习惯性以(1)号点为根,结果直到心态爆炸都没做出来)。
想到这一点,这题就很简单了。
具体
设(p_i)为从(i)到根路径上的最小值,考虑一个黑点(y)对于(x)号点的贡献。
显然这一贡献就是将(x)的答案向(y)到(LCA(x,y))路径上的最小值取(min)。
而由于(LCA(x,y))到根路径上的最小值也是(x)到根路径上的最小值,肯定会被算在答案中,所以就相当于是向(y)到根路径上的最小值,即(p_y)取(min)。
所以,我们开一个变量(t),记录所有黑点(p)的最小值。
则(x)的答案就是(min(p_x,t))。
代码
#include<bits/stdc++.h>
#define Tp template<typename Ty>
#define Ts template<typename Ty,typename... Ar>
#define Reg register
#define RI Reg int
#define Con const
#define CI Con int&
#define I inline
#define W while
#define N 1000000
#define add(x,y) (e[++ee].nxt=lnk[x],e[lnk[x]=ee].to=y)
#define Gmin(x,y) (x>(y)&&(x=(y)))
#define min(x,y) ((x)<(y)?(x):(y))
using namespace std;
int n,Qt,ee,lnk[N+5];struct edge {int to,nxt;}e[N<<1];
class FastIO
{
private:
#define FS 100000
#define tc() (A==B&&(B=(A=FI)+fread(FI,1,FS,stdin),A==B)?EOF:*A++)
#define pc(c) (C==E&&(clear(),0),*C++=c)
#define tn (x<<3)+(x<<1)
#define D isdigit(c=tc())
int T;char c,*A,*B,*C,*E,FI[FS],FO[FS],S[FS];
public:
I FastIO() {A=B=FI,C=FO,E=FO+FS;}
Tp I void read(Ty& x) {x=0;W(!D);W(x=tn+(c&15),D);}
Ts I void read(Ty& x,Ar&... y) {read(x),read(y...);}
Tp I void write(Ty x) {W(S[++T]=x%10+48,x/=10);W(T) pc(S[T--]);}
Tp I void writeln(Con Ty& x) {write(x),pc('
');}
I void clear() {fwrite(FO,1,C-FO,stdout),C=FO;}
}F;
class Solver
{
private:
int p[N+5];
I void dfs(CI x,CI lst=0)//初始化p
{
for(RI i=lnk[x];i;i=e[i].nxt) e[i].to^lst&&
(p[e[i].to]=min(p[x],e[i].to),dfs(e[i].to,x),0);
}
public:
I void Solve()
{
RI op,x,t,lst=0;F.read(op,x),--Qt,t=x%n+1,dfs(p[t]=t);//以第一个黑点为根
W(Qt--) F.read(op,x),op==1?Gmin(t,p[(x+lst)%n+1]):(F.writeln(lst=min(t,p[(x+lst)%n+1])),0);//进行操作
}
}S;
int main()
{
freopen("tree.in","r",stdin),freopen("tree.out","w",stdout);
RI i,x,y;for(F.read(n,Qt),i=1;i^n;++i) F.read(x,y),add(x,y),add(y,x);
return S.Solve(),F.clear(),0;
}