zoukankan      html  css  js  c++  java
  • python生成职业要求词云

    接着上篇的说的,爬取了大数据相关的职位信息,http://www.17bigdata.com/jobs/。

    # -*- coding: utf-8 -*-
    """
    Created on Thu Aug 10 07:57:56 2017
    
    @author: lenovo
    """
    
    from wordcloud import WordCloud
    import pandas as pd
    import numpy as np
    import matplotlib.pyplot as plt
    import jieba
    
    def cloud(root,name,stopwords):
        filepath = root +'\' + name
        f = open(filepath,'r',encoding='utf-8')
        txt = f.read()
        f.close()
        cut = jieba.cut(txt)
        words = []
        for i in cut:
            words.append(i)
        df = pd.DataFrame({'words':words})
        s= df.groupby(df['words'])['words'].agg([('size',np.size)]).sort_values(by='size',ascending=False)
        s = s[~s.index.isin(stopwords['stopword'])].to_dict()
        wordcloud = WordCloud(font_path =r'E:Pythonmachine learningsimhei.ttf',background_color='black')
        wordcloud.fit_words(s['size'])
        plt.imshow(wordcloud)
        pngfile = root +'\' + name.split('.')[0] + '.png'
        wordcloud.to_file(pngfile)
        
    import os 
    jieba.load_userdict(r'E:Pythonmachine learningNLPstopwords.txt')
    stopwords = pd.read_csv(r'E:Pythonmachine learningStopwordsCN.txt',encoding='utf-8',index_col=False)
    for root,dirs,file in os.walk(r'E:职位信息'):
        for name in file:
            if name.split('.')[-1]=='txt':
                print(name)
                cloud(root,name,stopwords)        

    词云如图所示:

    可以看出有些噪声词没能被去除,比如相关、以上学历等无效词汇。本想通过DF判断停用词,但是我爬的时候没顾及到这个问题,外加本身记录数也不高,就没再找职位信息的停用词。当然也可看出算法和经验是很重要的。加油

  • 相关阅读:
    三路快排
    双路快排
    随机快排
    快速排序
    双向链表
    单向链表
    堆排序
    二分插入、bisect
    jmockit使用总结-MockUp重点介绍
    java拼接字符串、格式化字符串方式
  • 原文地址:https://www.cnblogs.com/chenyaling/p/7338416.html
Copyright © 2011-2022 走看看