接着上篇的说的,爬取了大数据相关的职位信息,http://www.17bigdata.com/jobs/。
# -*- coding: utf-8 -*- """ Created on Thu Aug 10 07:57:56 2017 @author: lenovo """ from wordcloud import WordCloud import pandas as pd import numpy as np import matplotlib.pyplot as plt import jieba def cloud(root,name,stopwords): filepath = root +'\' + name f = open(filepath,'r',encoding='utf-8') txt = f.read() f.close() cut = jieba.cut(txt) words = [] for i in cut: words.append(i) df = pd.DataFrame({'words':words}) s= df.groupby(df['words'])['words'].agg([('size',np.size)]).sort_values(by='size',ascending=False) s = s[~s.index.isin(stopwords['stopword'])].to_dict() wordcloud = WordCloud(font_path =r'E:Pythonmachine learningsimhei.ttf',background_color='black') wordcloud.fit_words(s['size']) plt.imshow(wordcloud) pngfile = root +'\' + name.split('.')[0] + '.png' wordcloud.to_file(pngfile) import os jieba.load_userdict(r'E:Pythonmachine learningNLPstopwords.txt') stopwords = pd.read_csv(r'E:Pythonmachine learningStopwordsCN.txt',encoding='utf-8',index_col=False) for root,dirs,file in os.walk(r'E:职位信息'): for name in file: if name.split('.')[-1]=='txt': print(name) cloud(root,name,stopwords)
词云如图所示:
可以看出有些噪声词没能被去除,比如相关、以上学历等无效词汇。本想通过DF判断停用词,但是我爬的时候没顾及到这个问题,外加本身记录数也不高,就没再找职位信息的停用词。当然也可看出算法和经验是很重要的。加油