zoukankan      html  css  js  c++  java
  • Redis 3.0.4 跳跃表

      跳跃表是一种有序数据结构,他是通过在每个节点中维持多个指向其他节点的指针,从而达到快速访问节点的目的。在的插入和删除都可以在O(lgN)时间复杂度内搞定

      Redis在两个地方用到跳跃表,一个是实现有序集合键,另一个是在集群节点中用作内部数据结构。

        1.跳跃表的实现

    /* ZSETs use a specialized version of Skiplists */
    typedef struct zskiplistNode {
        robj *obj;
        //分值
        double score;
        //后退指针
        struct zskiplistNode *backward;
        //
        struct zskiplistLevel {
            //前进指针
            struct zskiplistNode *forward;
            //跨度
            unsigned int span;
        } level[];
    } zskiplistNode;
    
    typedef struct zskiplist {
        struct zskiplistNode *header, *tail;
        unsigned long length; //记录跳跃表内,层数最大的节点的层数
        int level;     //记录跳跃表的长度 也就是目前包含节点的数量
    } zskiplist;

    跳跃表的结构如图:图片来源

      跳跃表节点每个元素都包含一个指向其他节点的指针,程序可以通过这些层来加快访问其他节点的速度,并且层数越多,访问节点的速度就越快。

      每次创建一个新跳跃表节点的时候,程序都会根据幂次定律(越大的数出现的概率越小)随机生成一个1~32之间的值作为level。

      2.跳跃表的实现

        1.跳跃表的结构

    /* ZSETs use a specialized version of Skiplists */
    typedef struct zskiplistNode {
        robj *obj;
        //分值
        double score;
        //后退指针
        struct zskiplistNode *backward;
        //
        struct zskiplistLevel {
            //前进指针
            struct zskiplistNode *forward;
            //跨度
            unsigned int span;
        } level[];
    } zskiplistNode;
    
    typedef struct zskiplist {
        struct zskiplistNode *header, *tail;
        unsigned long length; //记录跳跃表内,层数最大的节点的层数
        int level;     //记录跳跃表的长度 也就是目前包含节点的数量
    } zskiplist;

        2.跳跃表的创建

    //创建一个跳表的节点
    zskiplistNode *zslCreateNode(int level, double score, robj *obj) {
        zskiplistNode *zn = zmalloc(sizeof(*zn)+level*sizeof(struct zskiplistLevel));
        zn->score = score;
        zn->obj = obj;
        return zn;
    }
    
    zskiplist *zslCreate(void) {
        int j;
        //表头
        zskiplist *zsl;
    
        zsl = zmalloc(sizeof(*zsl));
        zsl->level = 1;   //初始化节点层数为1
        zsl->length = 0;   //初始化节点数为0
        //ZSKIPLIST_MAXLEVEL = 32  头节点默认32层 所有节点层数不能超过32
        zsl->header = zslCreateNode(ZSKIPLIST_MAXLEVEL,0,NULL);
        //初始化 表头的32个level层
        for (j = 0; j < ZSKIPLIST_MAXLEVEL; j++) {
            zsl->header->level[j].forward = NULL;  //初始化头节点层结构数组
            zsl->header->level[j].span = 0;
        }
        zsl->header->backward = NULL;
        zsl->tail = NULL;
        return zsl;
    }

        3.跳跃表的插入

    //插入元素
    zskiplistNode *zslInsert(zskiplist *zsl, double score, robj *obj) {
        zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x; //update节点数组  保存插入节点每一层的前驱节点
        unsigned int rank[ZSKIPLIST_MAXLEVEL]; //rank 用于保存 插入位置在每一层中跨过的节点数
        int i, level;
    
        redisAssert(!isnan(score));
        x = zsl->header;  //设置头节点
        for (i = zsl->level-1; i >= 0; i--) {
            /* store rank that is crossed to reach the insert position */
            //如果是最高层 则表示扩过0个节点 否则 记录跨过的节点数 与上一层相同
            rank[i] = i == (zsl->level-1) ? 0 : rank[i+1];
            //每次遍历从上一层的前驱节点开始遍历
            while (x->level[i].forward &&
                (x->level[i].forward->score < score ||
                    (x->level[i].forward->score == score &&
                    compareStringObjects(x->level[i].forward->obj,obj) < 0))) {
                rank[i] += x->level[i].span;
                x = x->level[i].forward;
            }
            update[i] = x; //记录第i层的前驱节点
        }
        /* we assume the key is not already inside, since we allow duplicated
         * scores, and the re-insertion of score and redis object should never
         * happen since the caller of zslInsert() should test in the hash table
         * if the element is already inside or not. */
        level = zslRandomLevel(); //随机生成层数
        if (level > zsl->level) {
            for (i = zsl->level; i < level; i++) {
                rank[i] = 0;
                update[i] = zsl->header;
                update[i]->level[i].span = zsl->length;
            }
            zsl->level = level;
        }
        x = zslCreateNode(level,score,obj);  //生成x node
        for (i = 0; i < level; i++) { //插入node节点 并更新前驱节点和跨度
            x->level[i].forward = update[i]->level[i].forward;
            update[i]->level[i].forward = x;
    
            /* update span covered by update[i] as x is inserted here */
            x->level[i].span = update[i]->level[i].span - (rank[0] - rank[i]);
            update[i]->level[i].span = (rank[0] - rank[i]) + 1;
        }
    
        /* increment span for untouched levels */
        for (i = level; i < zsl->level; i++) {
            update[i]->level[i].span++;
        }
    
        x->backward = (update[0] == zsl->header) ? NULL : update[0];
        if (x->level[0].forward)
            x->level[0].forward->backward = x;
        else
            zsl->tail = x;
        zsl->length++;
        return x;
    }

        4.跳跃表的删除

    //逐层遍历 删除x节点 update 记录x节点每一层的前驱节点
    void zslDeleteNode(zskiplist *zsl, zskiplistNode *x, zskiplistNode **update) {
        int i;
        for (i = 0; i < zsl->level; i++) {
            if (update[i]->level[i].forward == x) {
                update[i]->level[i].span += x->level[i].span - 1;
                update[i]->level[i].forward = x->level[i].forward;
            } else {
                update[i]->level[i].span -= 1;
            }
        }
        if (x->level[0].forward) {
            x->level[0].forward->backward = x->backward;
        } else {
            zsl->tail = x->backward;
        }
        while(zsl->level > 1 && zsl->header->level[zsl->level-1].forward == NULL)
            zsl->level--;
        zsl->length--;
    }
    
    /* Delete an element with matching score/object from the skiplist. */
    int zslDelete(zskiplist *zsl, double score, robj *obj) {
        zskiplistNode *update[ZSKIPLIST_MAXLEVEL], *x;
        int i;
    
        x = zsl->header;
        for (i = zsl->level-1; i >= 0; i--) {
            while (x->level[i].forward &&
                (x->level[i].forward->score < score ||
                    (x->level[i].forward->score == score &&
                    compareStringObjects(x->level[i].forward->obj,obj) < 0)))
                x = x->level[i].forward;
            update[i] = x; //记录节点的前驱节点
        }
        /* We may have multiple elements with the same score, what we need
         * is to find the element with both the right score and object. */
        x = x->level[0].forward;
        if (x && score == x->score && equalStringObjects(x->obj,obj)) {
            zslDeleteNode(zsl, x, update);
            zslFreeNode(x);
            return 1;
        }
        return 0; /* not found */
    }

        5.跳跃表查找:会给定一个range,然后在跳跃表中查找相应的值,可用于查找删除操作。

        range的数据结构

    /* Struct to hold a inclusive/exclusive range spec by score comparison. */
    typedef struct {
        double min, max;  //最大值 最小值
        int minex, maxex; /* are min or max exclusive? */ //是否为开闭空间 1为开 0为闭
    } zrangespec;
    
    /* Struct to hold an inclusive/exclusive range spec by lexicographic comparison. */
    //一个字典顺序的范围
    typedef struct {
        robj *min, *max;  /* May be set to shared.(minstring|maxstring) */
        int minex, maxex; /* are min or max exclusive? */
    } zlexrangespec;

      例如返回区间的最小值

    static int zslValueGteMin(double value, zrangespec *spec) {
        return spec->minex ? (value > spec->min) : (value >= spec->min);
    }
    
    static int zslValueLteMax(double value, zrangespec *spec) {
        return spec->maxex ? (value < spec->max) : (value <= spec->max);
    }
    
    /* Returns if there is a part of the zset is in range. */
    //判断是否有(range->min,range->max)在哈希表中
    int zslIsInRange(zskiplist *zsl, zrangespec *range) {
        zskiplistNode *x;
    
        /* Test for ranges that will always be empty. */
        if (range->min > range->max ||
                (range->min == range->max && (range->minex || range->maxex)))
            return 0;
        x = zsl->tail;
        if (x == NULL || !zslValueGteMin(x->score,range))
            return 0;
        x = zsl->header->level[0].forward;
        if (x == NULL || !zslValueLteMax(x->score,range))
            return 0;
        return 1;
    }
    
    /* Find the first node that is contained in the specified range.
     * Returns NULL when no element is contained in the range. */
    //返回满足区间最小值
    zskiplistNode *zslFirstInRange(zskiplist *zsl, zrangespec *range) {
        zskiplistNode *x;
        int i;
    
        /* If everything is out of range, return early. */
        if (!zslIsInRange(zsl,range)) return NULL;
    
        x = zsl->header;
        for (i = zsl->level-1; i >= 0; i--) {
            /* Go forward while *OUT* of range. */
            while (x->level[i].forward &&
                !zslValueGteMin(x->level[i].forward->score,range))
                    x = x->level[i].forward;
        }
    
        /* This is an inner range, so the next node cannot be NULL. */
        x = x->level[0].forward;
        redisAssert(x != NULL);
    
        /* Check if score <= max. */
        if (!zslValueLteMax(x->score,range)) return NULL;
        return x;
    }

        

  • 相关阅读:
    N^N hdu1060
    二叉树的所有操作
    溢出问题
    POJ1562深搜问题
    已知前序,中序,求后序
    交换a,b
    深度和广度优先搜索
    最长回文子串
    scanf
    WCF Ria Service 理解
  • 原文地址:https://www.cnblogs.com/chenyang920/p/13166822.html
Copyright © 2011-2022 走看看