zoukankan      html  css  js  c++  java
  • HDU-5074

    Hatsune Miku

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
    Total Submission(s): 931    Accepted Submission(s): 651


    Problem Description
    Hatsune Miku is a popular virtual singer. It is very popular in both Japan and China. Basically it is a computer software that allows you to compose a song on your own using the vocal package.

    Today you want to compose a song, which is just a sequence of notes. There are only m different notes provided in the package. And you want to make a song with n notes.


    Also, you know that there is a system to evaluate the beautifulness of a song. For each two consecutive notes a and b, if b comes after a, then the beautifulness for these two notes is evaluated as score(a, b).

    So the total beautifulness for a song consisting of notes a1, a2, . . . , an, is simply the sum of score(ai, ai+1) for 1 ≤ i ≤ n - 1.

    Now, you find that at some positions, the notes have to be some specific ones, but at other positions you can decide what notes to use. You want to maximize your song’s beautifulness. What is the maximum beautifulness you can achieve?
     
    Input
    The first line contains an integer T (T ≤ 10), denoting the number of the test cases.

    For each test case, the first line contains two integers n(1 ≤ n ≤ 100) and m(1 ≤ m ≤ 50) as mentioned above. Then m lines follow, each of them consisting of m space-separated integers, the j-th integer in the i-th line for score(i, j)( 0 ≤ score(i, j) ≤ 100). The next line contains n integers, a1, a2, . . . , an (-1 ≤ ai ≤ m, ai ≠ 0), where positive integers stand for the notes you cannot change, while negative integers are what you can replace with arbitrary notes. The notes are named from 1 to m.
     
    Output
    For each test case, output the answer in one line.
     
    Sample Input

    2
    5 3
    83 86 77
    15 93 35
    86 92 49
    3 3 3 1 2
    10 5
    36 11 68 67 29
    82 30 62 23 67
    35 29 2 22 58
    69 67 93 56 11
    42 29 73 21 19
    -1 -1 5 -1 4 -1 -1 -1 4 -1

    Sample Output
    270
    625
     
    Source
     
    /**
        题意:m种点,一个长度为n的串,若串中的数为-1  则为待定,否则为这点
                求这个串的最大价值,
        做法:dp 
                分为四种情况,如果当前点是未知
                                    前一个点已知
                                    前一个点未知
                              如果当前点已知
                                      前一个点已知
                                      前一个点未知
                情况很少  很容易枚举
        ============================================================
                            dp是硬伤
        ============================================================
    **/
    #include <iostream>
    #include <algorithm>
    #include <string.h>
    #include <cmath>
    #include <stdio.h>
    #include <queue>
    #define maxn 110
    using namespace std;
    int score[maxn][maxn];
    int note[maxn];
    int dp[maxn][maxn];
    int main()
    {
        int T;
        scanf("%d", &T);
        while(T--)
        {
            int n, m;
            scanf("%d %d", &n, &m);
            for(int i = 1; i <= m; i++)
            {
                for(int j = 1; j <= m; j++)
                {
                    scanf("%d", &score[i][j]);
                }
            }
            for(int i = 1; i <= n; i++)
            {
                scanf("%d", &note[i]);
            }
            memset(dp, 0, sizeof(dp));
            for(int i = 2; i <= n; i++)
            {
                if(note[i] > 0)
                {
                    if(note[i - 1] > 0)
                    {
                        dp[i][note[i]] = dp[i - 1][note[i - 1]] + score[note[i - 1]][note[i]];
                    }
                    else
                    {
                        for(int j = 1; j <= m; j++)
                        {
                            dp[i][note[i]] = max(dp[i][note[i]], dp[i - 1][j] + score[j][note[i]]);
                        }
                    }
                }
                else
                {
                    if(note[i - 1] > 0)
                    {
                        for(int j = 1; j <= m; j++)
                        {
                            dp[i][j] = max(dp[i][j], dp[i - 1][note[i - 1]] + score[note[i - 1]][j]);
                        }
                    }
                    else
                    {
                        for(int j = 1; j <= m; j++)
                        {
                            for(int k = 1; k <= m; k++)
                            {
                                dp[i][j] = max(dp[i][j], dp[i - 1][k] + score[k][j]);
                            }
                        }
                    }
                }
            }
            int  sum = -1;
            if(note[n] > 0) {
                sum = dp[n][note[n]];
            }
            else
            {
                for(int i = 1; i <= m; i++)
                {
                    sum = max(sum, dp[n][i]);
                }
            }
            printf("%d
    ", sum);
        }
        return 0;
    }
    View Code
  • 相关阅读:
    hdu--1231--并查集<连分量的个数>
    hdu--1272--并查集||图的特点
    hdu--1856--并查集的离散化处理
    hdu--1285 && 4857 --正向 || 逆向拓扑排序 && 优先队列
    hdu--1671--字典树<出现mle怎么解决>
    CF260--C--dp<最大不连续子序列和>
    Hibernate之级联关系配置的作用
    调用JS的方法
    Hibernate映射关系之多对多
    Hibernate映射关系之一对多
  • 原文地址:https://www.cnblogs.com/chenyang920/p/4741154.html
Copyright © 2011-2022 走看看