zoukankan      html  css  js  c++  java
  • 《机器学习》学习笔记(一):线性回归、逻辑回归

        本笔记主要记录学习《机器学习》的总结体会。如有理解不到位的地方,欢迎大家指出,我会努力改正。

        在学习《机器学习》时,我主要是通过Andrew Ng教授在mooc上提供的《Machine Learning》课程,不得不说Andrew Ng老师在讲授这门课程时,真的很用心,特别是编程练习,这门课真的很nice,在此谢谢Andrew Ng老师的付出。同时也谢过告知这个平台的小伙伴。本文在写的过程中,多有借鉴Andrew Ng教授在mooc提供的资料,再次感谢。

        转载请注明出处:http://blog.csdn.net/u010278305

        什么是机器学习?我认为机器学习就是,给定一定的信息(如一间房子的面子,一幅图片每个点的像素值等等),通过对这些信息进行“学习”,得出一个“学习模型“,这个模型可以在有该类型的信息输入时,输出我们感兴趣的结果。好比我们如果要进行手写数字的识别,已经给定了一些已知信息(一些图片和这些图片上的手写数字是多少),我们可以按以下步骤进行学习:

        1、将这些图片每个点的像素值与每个图片的手写数字值输入”学习系统“。

        2、通过”学习过程“,我们得到一个”学习模型“,这个模型可以在有新的手写数字的图片输入时,给出这张图片对应手写数字的合理估计。

        什么是线性回归?我的理解就是,用一个线性函数对提供的已知数据进行拟合,最终得到一个线性函数,使这个函数满足我们的要求(如具有最小平方差,随后我们将定义一个代价函数,使这个目标量化),之后我们可以利用这个函数,对给定的输入进行预测(例如,给定房屋面积,我们预测这个房屋的价格)。如下图所示:


    假设我们最终要的得到的假设函数具有如下形式:

                                                           

    其中,x是我们的输入,theta是我们要求得的参数。

    代价函数如下:

                                                             

    我们的目标是使得此代价函数具有最小值。

    为此,我们还需要求得代价函数关于参量theta的导数,即梯度,具有如下形式:

                                                 

    有了这些信息之后,我们就可以用梯度下降算法来求得theta参数。过程如下:

                                              

    其实,为了求得theta参数,有更多更好的算法可以选择,我们可以通过调用matlab的fminunc函数实现,而我们只需求出代价与梯度,供该函数调用即可。

    根据以上公式,我们给出代价函数的具体实现:

    function J = computeCostMulti(X, y, theta)
    %COMPUTECOSTMULTI Compute cost for linear regression with multiple variables
    %   J = COMPUTECOSTMULTI(X, y, theta) computes the cost of using theta as the
    %   parameter for linear regression to fit the data points in X and y
    
    % Initialize some useful values
    m = length(y); % number of training examples
    
    % You need to return the following variables correctly 
    J = 0;
    
    % Instructions: Compute the cost of a particular choice of theta
    %               You should set J to the cost.
    hThetaX=X*theta;
    J=1/(2*m)*sum((hThetaX-y).^2);
    
    end
    

        什么是逻辑回归?相比于线性回归,逻辑回归只会输出一些离散的特定值(例如判定一封邮件是否为垃圾邮件,输出只有0和1),而且对假设函数进行了处理,使得输出只在0和1之间。

    假设函数如下:

                                                                                          

    代价函数如下:

                                   

    梯度函数如下,观察可知,形式与线性回归时一样:

                                                 

    有了这些信息,我们就可以通过fminunc求出最优的theta参数,我们只需给出代价与梯度的计算方式,代码如下:

    function [J, grad] = costFunction(theta, X, y)
    %COSTFUNCTION Compute cost and gradient for logistic regression
    %   J = COSTFUNCTION(theta, X, y) computes the cost of using theta as the
    %   parameter for logistic regression and the gradient of the cost
    %   w.r.t. to the parameters.
    
    % Initialize some useful values
    m = length(y); % number of training examples
    
    % You need to return the following variables correctly 
    J = 0;
    grad = zeros(size(theta));
    
    % Instructions: Compute the cost of a particular choice of theta.
    %               You should set J to the cost.
    %               Compute the partial derivatives and set grad to the partial
    %               derivatives of the cost w.r.t. each parameter in theta
    %
    % Note: grad should have the same dimensions as theta
    %
    hThetaX=sigmoid(X * theta);
    J=1/m*sum(-y.*log(hThetaX)-(1-y).*log(1-hThetaX));
    grad=(1/m*(hThetaX-y)'*X)';
    
    end

    其中,sigmod函数如下:

    function g = sigmoid(z)
    %SIGMOID Compute sigmoid functoon
    %   J = SIGMOID(z) computes the sigmoid of z.
    
    % You need to return the following variables correctly 
    g = zeros(size(z));
    
    % Instructions: Compute the sigmoid of each value of z (z can be a matrix,
    %               vector or scalar).
    e=exp(1);
    g=1./(1+e.^-z);
    
    end
    

    有时,会出现”过拟合“的情况,即求得的参数能够很好的拟合训练集中的数据,但在进行预测时,明显与趋势不符,好比下图所示:

    此时,我们需要进行正则化处理,对参数进行惩罚,使得除theta(1)之外的theta值均保持较小值。

    进行正则化之后的代价函数如下:

                                  

    进行正则化之后的梯度如下:

                             

    下面给出正则化之后的代价与梯度值得代码:

    function [J, grad] = costFunctionReg(theta, X, y, lambda)
    %COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization
    %   J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using
    %   theta as the parameter for regularized logistic regression and the
    %   gradient of the cost w.r.t. to the parameters. 
    
    % Initialize some useful values
    m = length(y); % number of training examples
    
    % You need to return the following variables correctly 
    J = 0;
    grad = zeros(size(theta));
    
    % Instructions: Compute the cost of a particular choice of theta.
    %               You should set J to the cost.
    %               Compute the partial derivatives and set grad to the partial
    %               derivatives of the cost w.r.t. each parameter in theta
    hThetaX=sigmoid(X * theta);
    theta(1)=0;
    J=1/m*sum(-y.*log(hThetaX)-(1-y).*log(1-hThetaX))+lambda/(2*m)*sum(theta.^2);
    grad=(1/m*(hThetaX-y)'*X)' + lambda/m*theta;
    
    end
    


    对于线性回归,正则化的过程基本类似。

    至于如何选择正则化时的常数lambda,我们可以将数据分为训练集、交叉验证集和测试集三部分,在不同lambda下,先用训练集求出参数theta,之后求出训练集与交叉验证集的代价,通过分析得出适合的lambda。如下图所示:


    转载请注明出处:http://blog.csdn.net/u010278305


  • 相关阅读:
    ES6 数值类型常用方法
    阿里云如何发布网站
    常用的网站推荐
    笔记一 sql 基础知识
    笔记一 MVC初识
    基础二 面向对象编程
    基础一
    css reset 样式
    CSS 嵌套绝对定位
    ADO
  • 原文地址:https://www.cnblogs.com/chenyn2014/p/4319124.html
Copyright © 2011-2022 走看看