1.算法之二分法
# 需求:有一个按照从小到大顺序排列的数字列表
# 需要从该数字列表中找到我们想要的那个一个数字
# 如何做更高效???
nums=[-3,4,7,10,13,21,43,77,89]
find_num=10
# def binary_search(find_num,l):
# print(l)
# if len(l) == 0:
# print('找的值不存在')
# return
# mid_index=len(l) // 2
#
# if find_num > l[mid_index]:
# # 接下来的查找应该是在列表的右半部分
# l=l[mid_index+1:]
# binary_search(find_num,l)
# elif find_num < l[mid_index]:
# # 接下来的查找应该是在列表的左半部分
# l=l[:mid_index]
# binary_search(find_num,l)
# else:
# print('find it')
#
# binary_search(find_num,nums)
2.面向过程的编程思想
# 面向过程的编程思想:
# 核心是"过程"二字,过程即流程,指的是做事的步骤:先什么、再什么、后干什么
# 基于该思想编写程序就好比在设计一条流水线
# 优点:复杂的问题流程化、进而简单化
# 缺点:扩展性非常差
# 面向过程的编程思想应用场景解析:
# 1、不是所有的软件都需要频繁更迭:比如编写脚本
# 2、即便是一个软件需要频繁更迭,也不并不代表这个软件所有的组成部分都需要一起更迭
3.匿名函数
3.1def用于定义有名函数
# func=函数的内存地址
# def func(x,y):
# return x+y
3.2lamdab用于定义匿名函数
print(lambda x,y:x+y)
3.3调用匿名函数
# 方式一:
# res=(lambda x,y:x+y)(1,2)
# print(res)
# 方式二:
# func=lambda x,y:x+y
# res=func(1,2)
# print(res)
3.4.匿名用于临时调用一次的场景:更多的是将匿名与其他函数配合使用
4.匿名函数的应用
salaries={
'siry':3000,
'tom':7000,
'lili':10000,
'jack':2000
}
# 需求1:找出薪资最高的那个人=》lili
# 迭代出的内容 比较的值
# 'siry' 3000
# 'tom' 7000
# 'lili' 10000
# 'jack' 2000
# def func(k):
# return salaries[k]
# ========================max的应用
# res=max(salaries,key=func) # 返回值=func('siry')
# print(res)
# res=max(salaries,key=lambda k:salaries[k])
# print(res)
# ========================min的应用
# res=min(salaries,key=lambda k:salaries[k])
# print(res)
# ========================sorted排序
# salaries={
# 'siry':3000,
# 'tom':7000,
# 'lili':10000,
# 'jack':2000
# }
res=sorted(salaries,key=lambda k:salaries[k],reverse=True)
# print(res)
# ========================map的应用(了解)
# l=['alex','lxx','wxx','薛贤妻']
# new_l=(name+'_dsb' for name in l)
# print(new_l)
# res=map(lambda name:name+'_dsb',l)
# print(res) # 生成器
# ========================filter的应用(了解)
# l=['alex_sb','lxx_sb','wxx','薛贤妻']
# res=(name for name in l if name.endswith('sb'))
# print(res)
# res=filter(lambda name:name.endswith('sb'),l)
# print(res)
# ========================reduce的应用(了解)
from functools import reduce
res=reduce(lambda x,y:x+y,[1,2,3],10) # 16
print(res)
res=reduce(lambda x,y:x+y,['a','b','c']) # 'a','b'
print(res)