zoukankan      html  css  js  c++  java
  • eof

    import eofs
    from eofs.standard import Eof
    import pandas as pd
    import numpy as np
    import glob
    import datetime
    from matplotlib import pyplot as plt
    import copy
    import re
    import time
    from pylab import *
    import matplotlib.dates as mdate
    import matplotlib.patches as patches
    import matplotlib.ticker as ticker
    import xarray as ax
    import copy
    import geopandas as gpd
    from pykrige.ok import OrdinaryKriging
    from pykrige.kriging_tools import write_asc_grid
    import pykrige.kriging_tools as kt
    from matplotlib.colors import LinearSegmentedColormap
    from matplotlib.patches import Path, PathPatch
    from shapely.geometry import LineString
    df = pd.read_csv(r'.6月xq表层.csv')
    fg = gpd.read_file(r'.覆盖.shp')
    fg1 = fg.to_crs(crs = 'EPSG:4326')
    bj = gpd.read_file(r'.xinqiao1.shp')
    bj1 = bj.to_crs(crs = 'EPSG:4326')
    bj2 = bj1.boundary[0]
    bj3 = bj2.coords[:]
    bj4 = list(bj3)
    x = []
    y =[]
    for i in range(len(bj4)):
    g = bj4[i][0]
    c = bj4[i][1]
    x.append(g)
    y.append(c)
    lons = np.array(x)
    lats = np.array(y)
    lons_1 = df['经度']
    lats_1 = df['纬度']
    a = df.iloc[:,9:22].T
    pd.set_option('display.max_rows', 10)
    pd.set_option('display.max_columns', 4)
    # print(a)
    # 预处理
    c = a.mean(axis=1)
    td = a.std(axis=1)
    # print(td)
    for i in range(len(a)):
    for j in range(0,34):
    # print(a.iloc[i,j])
    a.iloc[i,j] = (a.iloc[i,j]-c[i])/td[i] # 列标准化
    # print(a)
    a1 = copy.deepcopy(np.array(a))

    # a2 = pd.DataFrame(a1)
    # print(a2)
    # a2.to_csv(r'.iaozhunc.csv',encoding='utf-8')

    # eofs

    solver = Eof(a1,ddof=0,center=False) # center 意味着要减去所有的平均,TMD
    eofs = solver.eofs(neofs=3, eofscaling=0)
    weights = solver.eigenvalues(3) / sum(solver.eigenvalues()) # 贡献量
    print(weights)
    pt = pd.DataFrame(eofs.T,columns=['fir','sec','thi']) # 模态
    print(pt)
    z1 = pt['fir']
    z2 = pt['sec']
    z3 = pt['thi']
    pcs = solver.pcs(npcs =3)
    # print(pcs)
    tc = pd.DataFrame(pcs,columns=['fir','sec','thi']) # 时间、权重
    tc_fir = tc['fir']
    tc_sec = tc['sec']
    tc_thi = tc['thi']
    grid_space = 0.001
    grid_lon = np.arange(np.amin(lons), np.amax(lons), grid_space)
    grid_lat = np.arange(np.amin(lats-0.0001), np.amax(lats), grid_space)
    OK1 = OrdinaryKriging(lons_1, lats_1,z1, variogram_model='spherical', verbose=False, enable_plotting=False,nlags=20)
    OK2 = OrdinaryKriging(lons_1, lats_1,z2, variogram_model='spherical', verbose=False, enable_plotting=False,nlags=20)
    OK3 = OrdinaryKriging(lons_1, lats_1,z3, variogram_model='spherical', verbose=False, enable_plotting=False,nlags=20)
    z_1,sss1 =OK1.execute('grid', grid_lon, grid_lat)
    z_2,sss2 =OK2.execute('grid', grid_lon, grid_lat)
    z_3,sss3 =OK3.execute('grid', grid_lon, grid_lat)
    X, Y = np.meshgrid(grid_lon, grid_lat)
    fig = plt.figure(figsize=(16,12))
    subplots_adjust(left=0.1,bottom=0.1,top=0.95,right=0.95,hspace=0.15,wspace=0.0005)
    # grid1 =plt.GridSpec(3,2,wspace=0.5,hspace=0.1)
    ax = fig.add_subplot(321)
    ax.plot(tc.index,tc_fir,color = 'black')
    ax1 = fig.add_subplot(322)
    cs =ax1.contourf(X,Y,z_1,200,extend='both',cmap='jet')
    cbar = fig.colorbar(cs,ax =ax1,fraction = 0.09)
    fg1.geometry.plot(facecolor='white',edgecolor='white',alpha=1,ax =ax1)
    ax2 = fig.add_subplot(323)
    ax2.plot(tc.index,tc_sec,color = 'black')
    ax3 = fig.add_subplot(324)
    cs1 =ax3.contourf(X,Y,z_2,200,extend='both',cmap='jet')
    cbar1 = fig.colorbar(cs,ax =ax3,fraction = 0.09)
    fg1.geometry.plot(facecolor='white',edgecolor='white',alpha=1,ax =ax3)
    ax4 = fig.add_subplot(325)
    ax4.plot(tc.index,tc_thi,color = 'black')
    ax5= fig.add_subplot(326)
    cs2 =ax5.contourf(X,Y,z_3,200,extend='both',cmap='jet')
    cbar2 = fig.colorbar(cs,ax =ax5,fraction = 0.09)
    fg1.geometry.plot(facecolor='white',edgecolor='white',alpha=1,ax =ax5)

    plt.show()

  • 相关阅读:
    MYSQL
    数据中台的思考与总结
    基于SpringCloud分布式架构
    java常用工具库使用
    String性能提升10倍的几个方法
    Validator 注解使用
    【数据结构】trie树
    几种排序算法小结
    Core data的batch update
    UIScrollView和UIPageControl结合实现图片浏览
  • 原文地址:https://www.cnblogs.com/chenyun-delft3d/p/14274234.html
Copyright © 2011-2022 走看看