zoukankan      html  css  js  c++  java
  • 潮位离散

    import eofs
    from eofs.standard import Eof
    import pandas as pd
    import numpy as np
    import glob
    import datetime
    from matplotlib import pyplot as plt
    import copy
    import re
    import time
    from pylab import *
    import matplotlib.dates as mdate
    import matplotlib.patches as patches
    import matplotlib.ticker as ticker
    import xarray as ax
    import copy
    import geopandas as gpd
    from pykrige.ok import OrdinaryKriging
    from pykrige.kriging_tools import write_asc_grid
    import pykrige.kriging_tools as kt
    from matplotlib.colors import LinearSegmentedColormap
    from matplotlib.patches import Path, PathPatch
    from shapely.geometry import LineString
    from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
    from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter

    time_parse1 = lambda date: datetime.datetime.strptime(date, '%Y/%m/%d %H:%M')

    df = pd.read_csv('./water_level_baozhen_1.csv',parse_dates=['date'],date_parser=time_parse1,encoding='utf-8')


    # time_p = str(df.iat[-1,0]).split()[0] + ' ' + '0' + ':' + '00' + ':' + '00'
    # print(time_p)

    time_list_1 = []
    time_list_2 = []
    list_1 = []
    for i in range(24):
    time_list_1.append('start_time' + str(i))
    time_list_2.append('start_time' + str(i))
    list_1.append('df' + str(i))
    time_list_1[0] = datetime.datetime.strptime("0:00:00", "%H:%M:%S").time()
    time_list_2[0] = datetime.datetime.strptime("0:00:09", "%H:%M:%S").time()
    for i in range(1, 24):
    time_list_1[i] = (datetime.datetime.strptime("00:00:00", "%H:%M:%S") + datetime.timedelta(
    hours=int(i))).time()
    time_list_2[i] = (datetime.datetime.strptime("00:00:09", "%H:%M:%S") + datetime.timedelta(
    hours=int(i))).time()
    # print(time_list_1)
    # print(time_list_2)

    list_1[0] = df[
    (df['date'].dt.time >= time_list_1[0]) & (df['date'].dt.time <= time_list_2[0])]
    t = list_1[0]

    # print(list_1[0])
    for x1 in range(1, 24):
    list_1[x1] = df[
    (df['date'].dt.time >= time_list_1[x1]) & (df['date'].dt.time <= time_list_2[x1])]

    for i in range(1,24):
    t = t.append(list_1[i])


    t1 = copy.deepcopy(t)
    t1 = t1.reset_index(drop=True)
    t1 =t1.sort_values(by = 'date')
    t2 = t1.reset_index(drop=True)
    t2.to_csv('./baozhen_hour.csv')




  • 相关阅读:
    黑马前端2020就业Web全套课-2020.4月最新版
    什么是Redis雪崩、穿透和击穿? 全面掌握Redis
    ElasticStack高级搜索入门到项目实战,Elasticsearch全文检索
    阿里云盘邀请码+软件下载
    Intellij IDEA超实用设置汇总,高效便捷敲代码
    双11的亿级高并发架构,是怎么设计的?
    TensorFlow 卷积神经网络实用指南 | iBooker·ApacheCN
    TensorFlow 入门 | iBooker·ApacheCN
    TensorFlow 2.0 快速入门指南 | iBooker·ApacheCN
    深度学习快速参考 | iBooker·ApacheCN
  • 原文地址:https://www.cnblogs.com/chenyun-delft3d/p/14688183.html
Copyright © 2011-2022 走看看