zoukankan      html  css  js  c++  java
  • 潮位离散

    import eofs
    from eofs.standard import Eof
    import pandas as pd
    import numpy as np
    import glob
    import datetime
    from matplotlib import pyplot as plt
    import copy
    import re
    import time
    from pylab import *
    import matplotlib.dates as mdate
    import matplotlib.patches as patches
    import matplotlib.ticker as ticker
    import xarray as ax
    import copy
    import geopandas as gpd
    from pykrige.ok import OrdinaryKriging
    from pykrige.kriging_tools import write_asc_grid
    import pykrige.kriging_tools as kt
    from matplotlib.colors import LinearSegmentedColormap
    from matplotlib.patches import Path, PathPatch
    from shapely.geometry import LineString
    from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
    from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter

    time_parse1 = lambda date: datetime.datetime.strptime(date, '%Y/%m/%d %H:%M')

    df = pd.read_csv('./water_level_baozhen_1.csv',parse_dates=['date'],date_parser=time_parse1,encoding='utf-8')


    # time_p = str(df.iat[-1,0]).split()[0] + ' ' + '0' + ':' + '00' + ':' + '00'
    # print(time_p)

    time_list_1 = []
    time_list_2 = []
    list_1 = []
    for i in range(24):
    time_list_1.append('start_time' + str(i))
    time_list_2.append('start_time' + str(i))
    list_1.append('df' + str(i))
    time_list_1[0] = datetime.datetime.strptime("0:00:00", "%H:%M:%S").time()
    time_list_2[0] = datetime.datetime.strptime("0:00:09", "%H:%M:%S").time()
    for i in range(1, 24):
    time_list_1[i] = (datetime.datetime.strptime("00:00:00", "%H:%M:%S") + datetime.timedelta(
    hours=int(i))).time()
    time_list_2[i] = (datetime.datetime.strptime("00:00:09", "%H:%M:%S") + datetime.timedelta(
    hours=int(i))).time()
    # print(time_list_1)
    # print(time_list_2)

    list_1[0] = df[
    (df['date'].dt.time >= time_list_1[0]) & (df['date'].dt.time <= time_list_2[0])]
    t = list_1[0]

    # print(list_1[0])
    for x1 in range(1, 24):
    list_1[x1] = df[
    (df['date'].dt.time >= time_list_1[x1]) & (df['date'].dt.time <= time_list_2[x1])]

    for i in range(1,24):
    t = t.append(list_1[i])


    t1 = copy.deepcopy(t)
    t1 = t1.reset_index(drop=True)
    t1 =t1.sort_values(by = 'date')
    t2 = t1.reset_index(drop=True)
    t2.to_csv('./baozhen_hour.csv')




  • 相关阅读:
    [转]批处理for命令使用指南
    批处理命令学习
    【树】Count Complete Tree Nodes
    【树】Flatten Binary Tree to Linked List(先序遍历)
    【树】Kth Smallest Element in a BST(递归)
    巧用border特性实现聊天气泡效果
    【树】Lowest Common Ancestor of a Binary Tree(递归)
    【树】Path Sum II(递归)
    【树】Populating Next Right Pointers in Each Node
    【树】Serialize and Deserialize Binary Tree
  • 原文地址:https://www.cnblogs.com/chenyun-delft3d/p/14688183.html
Copyright © 2011-2022 走看看