zoukankan      html  css  js  c++  java
  • 潮差

    import eofs
    from eofs.standard import Eof
    import pandas as pd
    import numpy as np
    import glob
    import datetime
    from matplotlib import pyplot as plt
    import copy
    import re
    import time
    from pylab import *
    import matplotlib.dates as mdate
    import matplotlib.patches as patches
    import matplotlib.ticker as ticker
    import xarray as ax
    import copy
    import geopandas as gpd
    from pykrige.ok import OrdinaryKriging
    from pykrige.kriging_tools import write_asc_grid
    import pykrige.kriging_tools as kt
    from matplotlib.colors import LinearSegmentedColormap
    from matplotlib.patches import Path, PathPatch
    from shapely.geometry import LineString
    from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
    from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter
    from sklearn.linear_model import LinearRegression
    import heapq
    from typing import *

    time_parse1 = lambda date: datetime.datetime.strptime(date, '%Y/%m/%d %H:%M')

    df = pd.read_csv('./water_level_nanmen_1.csv',parse_dates=['date'],date_parser=time_parse1,encoding='utf-8')
    print(df)
    helper = pd.DataFrame({'date': pd.date_range(df['date'].min(), df['date'].max(), freq='5T')})
    df1 = pd.merge(df,helper,on = 'date',how='outer').sort_values('date')
    df1.reset_index(drop=True,inplace=True)
    time_1 = pd.Series(list(df1['date']))

    dt =list(copy.deepcopy(df1['water_level']))
    dy = pd.Series(dt,index=time_1)
    dy= dy.resample('5T').mean()
    dy1 =dy.interpolate(method='spline', order=3)
    # # print(dy1)
    dty = pd.DataFrame(dy1,columns=['water_level'])
    dty.to_csv('./nanmen_five.csv')
    wt = dty['water_level']


    df = pd.DataFrame({'B': [-10, 1, 2, 5, 4]},
    index = [pd.Timestamp('20130101 09:00:00'),
    pd.Timestamp('20130101 09:00:02'),
    pd.Timestamp('20130101 09:00:03'),
    pd.Timestamp('20130101 09:00:05'),
    pd.Timestamp('20130101 09:00:06')])

    class Solution:
    def minSlidingWindow(self, nums: List[int], k: int) -> List[int]:
    n = len(nums)
    # 注意 Python 默认的优先队列是小根堆
    # 将数组中的元素取反 5 -> -5 1 -> -1;此时:-5 < -1;5就可以排到1上面了。
    q = [(nums[i], i) for i in range(k)]
    heapq.heapify(q)
    ans1 = [q[0][0]]
    # print(ans)
    for i in range(k, n):
    heapq.heappush(q, (nums[i], i)) #右移一个
    #不断地移除堆顶的元素,直到堆顶的元素确实出现在滑动窗口中
    while q[0][1] <= i - k:
    heapq.heappop(q)
    ans1.append(q[0][0])

    return ans1

    def maxSlidingWindow(self, nums: List[int], k: int) -> List[int]:
    n = len(nums)
    # 注意 Python 默认的优先队列是小根堆
    # 将数组中的元素取反 5 -> -5 1 -> -1;此时:-5 < -1;5就可以排到1上面了。
    q = [(-nums[i], i) for i in range(k)]
    heapq.heapify(q)

    ans = [-q[0][0]]
    for i in range(k, n):
    heapq.heappush(q, (-nums[i], i)) # 右移一个
    # 不断地移除堆顶的元素,直到堆顶的元素确实出现在滑动窗口中
    while q[0][1] <= i - k:
    heapq.heappop(q)
    ans.append(-q[0][0])

    return ans



    #
    ans1 = Solution()
    # # nums = input()
    # # nums = [int(i) for i in nums.split()]
    # # k = int(input())
    # nums = [1,3,-1,-3,5,3,6,7]
    # k = 3
    # nums = df['B']
    # k= 2

    nums = wt
    k =324

    # print(k)
    # print(nums)

    tu = pd.Series(ans1.minSlidingWindow(nums,k))
    ti= pd.Series(ans1.maxSlidingWindow(nums,k))
    tp = ti-tu
    tpo = pd.DataFrame(tp)
    tpo.to_csv('./142.csv')





  • 相关阅读:
    Raknet是一个基于UDP网络传输协议的C++网络库(还有一些其它库,比如nanomsg,fastsocket等等)
    Arch Linux 是个 针对 i686 优化的 Linux 发行版(通过可以轻松使用的二进制包系统
    使用网盘(Dropbox/Google Drive)同步Git仓库
    百度网盘web端项目总结
    国内的网盘一个个倒下,这里有一份能让你用到老的存储指南(有好多评论)
    单元测试
    C# Closure
    gulp
    Net Memory Profiler 分析.Net程序内存泄露
    Net内存泄露原因及解决办法
  • 原文地址:https://www.cnblogs.com/chenyun-delft3d/p/14688202.html
Copyright © 2011-2022 走看看