zoukankan      html  css  js  c++  java
  • 第三篇、Python函数

    1、函数和过程的定义:

    1) 函数定义:函数是逻辑结构化和过程化的一种编程方法。

    2) 过程定义:过程就是简单特殊没有返回值的函数。

    当一个函数/过程没有使用return显示的定义返回值时,python解释器会隐式的返回None,所以在python中即便是过程也可以算作函数。

    3)编写函数的注意事项:
    a. 尽量不要使用全局变量。
    b. 如果参数是可变类型数据,在函数内,不要修改它。
    c. 每个函数的功能和目标要单纯,不要试图一个函数做很多事情。
    d. 函数的代码行数尽量少。
    e. 函数的独立性越强越好,不要跟其它的外部东西产生关联。

    python中函数定义方法:
     
    def test(x):
        "The function definitions"  #函数体
        x+=1                        #函数体
        return x                    #函数体:写在缩进块中
         
    def:定义函数的关键字
    test:函数名,需要符合标识符规则
    ():内可定义形参
    “:”:不可省略,
    "":文档描述(非必要)一般在每个函数名字的下面,还要比较多的说明,这个被称为“文档”,在文档中主要是说明这个函数的用途。(三引号的文档内容) x+=1:泛指代码块或程序处理逻辑 return:定义返回值 调用运行:可以带参数也可以不带--函数名()

    2. 函数的意义:

    1)代码重用

    2)保持一致性,易维护

    3)可扩展性

    3. 函数返回值

       返回值数=0:返回None

       返回值数=1:返回object

       返回值数>1:返回tuple,返回一个tuple可以省略括号,而多个变量可以同时接收一个tuple,按位置赋给对应的值。

    函数体内部的语句在执行时,一旦执行到return时,函数就执行完毕,并将结果返回。类似break作用:return可以结束正在执行的函数。将变量result的值返回,把返回值赋值给变量。如果没有赋值语句,函数照样返回值,但是它飘忽在内存中,我们无法得到,并且最终还被当做垃圾被python回收了。

    4.传值方式和参数

    1) 传值方式

    ● 传统方式----函数调用时传参,直接给参数

    ● 调用函数传值----通过变量间接给参数。要传的值放到元组(或字典)中,赋值给一个变量bars,然后在函数调用时传参add(*bars)的方式,把值传到函数内。有点像收集参数的逆过程。注意的是,元组中元素的个数,要跟函数所要求的变量个数一致。

    使用一个星号*,是以元组形式传值,如果用**的方式,是以字典的形式传值。

    2) 参数

    本质上就是一个“占位符”,当调用一个函数的时候,并不是赋值了一份参数的值来替换占位符,而是把占位符指向了变量,进而指向了对象。换个角度说,就是通过一连串的接力动作,把对象传给了函数。这样说来,你就可以在函数内部改变那个对象了。

    a. 形参变量只有在被调用时才分配内存单元,在调用结束时,即刻释放所分配的内存单元。因此,形参只在函数内部有效。函数调用结束返回主调用函数后则不能再使用该形参变量

    b. 实参可以是常量、变量、表达式、函数等,无论实参是何种类型的量,在进行函数调用时,它们都必须有确定的值,以便把这些值传送给形参。因此应预先用赋值,输入等办法使参数获得确定值

    c. 位置参数是标准调用,按照顺序以此对参数进行赋值,实参与形参必须数量一致,位置一一对应。def foo(p1,p2,p3,...) 

    d. 关键字参数:位置无需固定,位置参数和关键字参数混用的时候,位置参数一定要在关键字参数的左边。

    e. 默认参数:def foo(p1=value1,p2=value2,...)由于函数的参数按从左到右的顺序匹配,所以默认参数只能定义在必需参数的后面。作用是简化调用,只需要把必须的参数传进去。但在需要的时候,又可以传入额外的参数来覆盖默认参数值。

    f. 参数组可变参数:适用于不确定参数个数的时候,def foo(*args) 和def foo(**kargs)

    Python解释器会把传入的一组参数组装成一个tuple传递给可变参数,因此,在函数内部,直接把变量 args 看成一个 tuple 就好了。

    参数个数的不确定性:输入的参数个数不确定

    ● 其它参数全部通过*arg,以元组的形式由arg收集起来。即使只有一个值,也是用tuple收集它。特别注意,在tuple中,如果只有一个元素,后面要有一个逗号。还有一种可能,就是不给那个*args传值,也是许可的,这时候*args收集到的是一个空的tuple。

    ● 如果用**kargs的形式收集值,会得到dict类型的数据,但是,需要在传值的时候说明“键”和“值”,因为在字典中是以键值对形式出现的。

     5. 变量

    1)其本质也是占位符。变量名命名得符合标识符规则,必须是大小写英文、数字和下划线(_)的组合,且不能用数字开头。通常使小写字母来命名python中的变量,也可以在其中加上下划线什么的,表示区别。

    全局变量:在程序的一开始定义的变量,作用域是整个程序

    局部变量:在子程序中定义的变量,作用域是定义该变量的子程序。

    当全局变量与局部变量同名时:在定义局部变量的子程序内,局部变量起作用;在其它地方全局变量起作用。如果在局部要对全局变量修改,需要在局部也要先声明该全局变量:使用global 变量名。

    2)读取变量顺序:如果无global关键字,先局部再全局,对于不可变数据类型的变量无法对全局变量重新赋值,对于可变数据类型的变量,可以对内部元素进行操作;如果有global关键字,先局部,再局部的全局变量,最后再全局,变量的本质就是全局的那个变量,可读取可赋值。

    3) global关键字用来在函数或其他局部作用域中使用全局变量。但是如果不修改全局变量也可以不使用global关键字。

          nonlocal关键字用来在函数或其他作用域中使用外层(非全局)变量。

    6. 前向引用

    python是解释性语音,函数的定义必须在调用前面。

     7.递归函数

    递归特性:

    a. 必须有一个明确的结束条件

    b. 每次进入更深一层递归时,问题规模相比上次递归都应有所减少

    c. 递归效率不高,递归层次过多会导致栈溢出(在计算机中,函数调用是通过栈(stack)这种数据结构实现的,每当进入一个函数调用,栈就会加一层栈帧,每当函数返回,栈就会减一层栈帧。由于栈的大小不是无限的,所以,递归调用的次数过多,会导致栈溢出)

    堆栈扫盲http://www.cnblogs.com/lln7777/archive/2012/03/14/2396164.html 

    尾递归优化:http://egon09.blog.51cto.com/9161406/1842475

      8. Lambda匿名函数:使代码简洁

    lambda arg1, arg2, ...argN : expression using arguments

    ●  在lambda后面直接跟变量

    ●  变量后面是冒号

    ●  冒号后面是表达式,表达式计算结果就是本函数的返回值

    9. 函数式编程:map(), reduce(), filter()

    满足俩个特性任意一个即为高阶函数

    1) 函数的传入参数是一个函数名

    2) 函数的返回值是一个函数名

    map(func,seq)

    array=[1,3,4,71,2]
    
    ret=[]
    for i in array:
        ret.append(i**2)
    print(ret)
    
    #如果我们有一万个列表,那么你只能把上面的逻辑定义成函数
    def map_test(array):
        ret=[]
        for i in array:
            ret.append(i**2)
        return ret
    
    print(map_test(array))
    
    #如果我们的需求变了,不是把列表中每个元素都平方,还有加1,减一,那么可以这样
    def add_num(x):
        return x+1
    def map_test(func,array):
        ret=[]
        for i in array:
            ret.append(func(i))
        return ret
    
    print(map_test(add_num,array))
    #可以使用匿名函数
    print(map_test(lambda x:x-1,array))
    
    
    #上面就是map函数的功能,map得到的结果是可迭代对象
    print(map(lambda x:x-1,range(5)))
    map()

    filter(func,seq)

    #电影院聚集了一群看电影bb的傻逼,让我们找出他们
    movie_people=['alex','wupeiqi','yuanhao','sb_alex','sb_wupeiqi','sb_yuanhao']
    
    def tell_sb(x):
        return x.startswith('sb')
    
    
    def filter_test(func,array):
        ret=[]
        for i in array:
            if func(i):
                ret.append(i)
        return ret
    
    print(filter_test(tell_sb,movie_people))
    
    
    #函数filter,返回可迭代对象
    print(filter(lambda x:x.startswith('sb'),movie_people))
    filter()

    reduce(func, iterable[, initializer])

    from functools import reduce
    #合并,得一个合并的结果
    array_test=[1,2,3,4,5,6,7]
    array=range(100)
    
    #报错啊,res没有指定初始值
    def reduce_test(func,array):
        l=list(array)
        for i in l:
            res=func(res,i)
        return res
    
    # print(reduce_test(lambda x,y:x+y,array))
    
    #可以从列表左边弹出第一个值
    def reduce_test(func,array):
        l=list(array)
        res=l.pop(0)
        for i in l:
            res=func(res,i)
        return res
    
    print(reduce_test(lambda x,y:x+y,array))
    
    #我们应该支持用户自己传入初始值
    def reduce_test(func,array,init=None):
        l=list(array)
        if init is None:
            res=l.pop(0)
        else:
            res=init
        for i in l:
            res=func(res,i)
        return res
    
    print(reduce_test(lambda x,y:x+y,array))
    print(reduce_test(lambda x,y:x+y,array,50))
    reduce()

    区别:

    map()是依次处理,对列表每个元素进行处理,结果是处理后的列表,顺序一样。

    filter()是遍历元素,进行筛选处理,布尔值为True的的留下来,得出一个筛选后的结果。

    reduce()是压缩处理,最后得出一个值。

    #map,filter,reduce,可以处理所有数据类型
    
    name_dic=[
        {'name':'alex','age':1000},
        {'name':'wupeiqi','age':10000},
        {'name':'yuanhao','age':9000},
        {'name':'linhaifeng','age':18},
    ]
    #利用filter过滤掉千年王八,万年龟,还有一个九千岁
    def func(x):
        age_list=[1000,10000,9000]
        return x['age'] not in age_list
    
    res=filter(func,name_dic)
    for i in res:
        print(i)
    
    res=filter(lambda x:x['age'] == 18,name_dic)
    for i in res:
        print(i)
    
    #reduce用来计算1到100的和
    from functools import reduce
    print(reduce(lambda x,y:x+y,range(100),100))
    print(reduce(lambda x,y:x+y,range(1,101)))
    
    #用map来处理字符串列表啊,把列表中所有人都变成sb,比方alex_sb
    name=['alex','wupeiqi','yuanhao']
    
    res=map(lambda x:x+'_sb',name)
    for i in res:
        print(i)
    map,filter,reduce

    10、内置函数

    all()    # 判断序列的所有元素是否布尔值,返回布尔值。e.g. print(all([1,2,""]))  -- False
    any()    # 当序列中有某个元素的布尔值为True,返回True。 e.g. print(all([1,2,""]))  -- True
    adb()       # 获取绝对值。 e.g. print(abs(-1))
    sum()       # 加法。 e.g. print(sum([0,4], 2)) -- 6
    divmod()    # 取商得余数。 e.g. print(divmod(10,3)) --(3, 1)
    pow(x,y,z)    #求次方。两个参数:x**y;三个参数:x**y%z. e.g. print(pow(3,3,2)) -- 1
    round()    # 四舍五入 e.g. print(round(4.5)) -- 4
    bin()      # 十进制转换成二进制。e.g. print(bin(3)) -- 0b11
    hex()      # 十进制转换成十六进制。e.g. print(bin(12)) -- 0xc
    oct()      # 十进制转换成八进制。e.g. print(oct(9)) -- 0o11
    float()    # 将一个数值或者字符转换成浮点型数值,不提供参数的时候,返回0.0。 e.g. print(float(3)) -- 3.0
    int()      # 将一个数字或base类型的字符串转换成整数。
    dict()     # 转换成字典
    list()     # 转换成列表
    tuple()    # 转换成元组
    set()      # 创建一个可变集合。 print(set("qiwsir"))  --  {'r', 's', 'q', 'w', 'i'}
    frozenset()  #创建一个不可变集合。 e.g. print(frozenset("qiwsir"))  -- frozenset({'w', 'i', 's', 'q', 'r'})
    str()        # 转换成字符串
    format()   # 格式化字符串
    eval()     # 提取字符串的数据结构或者运行字符串的表达式。e.g. dic_str="{'name':'alex'}"   d1=eval(dic_str)   print(d1['name']) -- alex ;  express="3+(4/2-1)*7"   print(eval(express)) -- 10.0
    bytes()    # 将字符(串)转换成对应的字节码, e.g. print(bytes("陈",encoding="utf-8"))    print(bytes("陈",encoding="utf-8").decode("utf-8"))编码解码要一致
    len()      # 返回对象(字符、列表、元组等)长度或项目个数。
    enumerate()  #对于一个可迭代的(iterable)/可遍历的对象(如列表、字符串),利用enumerate可以同时获得索引和值。一般跟for一起使用。list1 = ["22", "33"] for index, item in enumerate(list1):    print(index,item)  -- 0 22 , 1 33
    map()      # 依次处理列表每个元素,结果是处理后的列表,顺序一致。
    filter()   # 遍历元素,进行筛选处理,布尔值为True的的留下来,得出一个筛选后的结果
    slice()    # 切片。 e.g. l='qiwsir'  print(l[slice(1,4,2)]) -- is
    reversed() # print(list(reversed([1,2,3])))
    sorted()   # 同类型比较大小并排序。 e.g. l=[3,6,-1,0]  print(sorted(l)) -- [-1,0,3,6]  l=['c','a']  print(sorted(l)) -- ['a', 'c']
    max()    # 返回序列的最大值 e.g.  L=[1,334,-2] print(max(L)) -- 334
    min()    # 返回序列的最小值 e.g. print(min(L)) -- -2
    zip()    # 从参数中的多个迭代器取元素组合成一个新的迭代器,又称拉链函数 e.g.print(list(zip(('a','b','c','d'),(1,2,3)))) -- [('a', 1), ('b', 2), ('c', 3)] 
    range()  # 创建一个整数列表,一般用在 for 循环中。e.g. for i in range(0, 20, 5):    print(i)  -- 0 5 10 15
    chr()    # 转换出ASCII表的对应字符。 e.g.print(chr(97)) -- a。
    ord()    # 转换出ASCII表的对应的编码。 e.g. print(ord('a')) -- 97
    hash()   # 返回hash值。可哈希的数据类型可变,不可hash的数据类型不可变。一般用于数字校验。
    isinstance(a,b)  #判断a是否是b的实例。e.g. print(isinstance('as',str)) --True
    type()   # 返回对象的类型
    id()     #用于获取对象的内存地址。e.g. print(id(1)) -- 1498639840; print(id('1')) -- 8088912
    dir()    # 打印出某个对象的方法。
    help()   # 打印方法的详细使用方式。e.g. print(help(all))
    globals()  # 返回全局变量的字典(包括系统提供的),修改其中的内容,值会真正的发生改变。
    locals()   # 返回是当前局部变量的字典,修改locals() 中变量值的时候,实际上对于原变量本身是没有任何影响的。
    next()
    object()
    open()
    print()
    property()
    repr()  #将对象转化为供解释器读取的形式。
    vars()   
    delattr()
    hasattr()
    getattr()
    字典的运算:最小值,最大值,排序
    salaries={
        'egon':3000,
        'alex':100000000,
        'wupeiqi':10000,
        'yuanhao':2000
    }
    
    迭代字典,取得是key,因而比较的是key的最大和最小值
    >>> max(salaries)
    'yuanhao'
    >>> min(salaries)
    'alex'
    
    可以取values,来比较
    >>> max(salaries.values())
    100000000
    >>> min(salaries.values())
    2000
    但通常我们都是想取出,工资最高的那个人名,即比较的是salaries的值,得到的是键
    >>> max(salaries,key=lambda k:salary[k])
    'alex'
    >>> min(salaries,key=lambda k:salary[k])
    'yuanhao'
    
    
    也可以通过zip的方式实现
    salaries_and_names=zip(salaries.values(),salaries.keys()) 
    
    先比较值,值相同则比较键
    >>> max(salaries_and_names)
    (100000000, 'alex')
    
    
    salaries_and_names是迭代器,因而只能访问一次
    >>> min(salaries_and_names)
    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
    ValueError: min() arg is an empty sequence
    
    
    sorted(iterable,key=None,reverse=False)
    View Code

     【参考文献】

    http://www.cnblogs.com/linhaifeng/articles/6113086.html

    http://blog.51cto.com/egon09

  • 相关阅读:
    用jmeter通过ssl验证访问https
    github jekyll主题
    JMeter中返回Json数据的处理方法
    使用Nginx实现反向代理
    Antd 表格 -- 自定义合并行处理
    Go语言--第8章 包(package)
    GO语言 -- 第7章 接口(INTEFACE)
    GO语言--第6章 结构体
    PHP--相关扩展安装
    Go语言--第5章 函数
  • 原文地址:https://www.cnblogs.com/chenyuting/p/8488487.html
Copyright © 2011-2022 走看看