zoukankan      html  css  js  c++  java
  • lzz分块+莫队

    A - 数列分块入门 1

     LibreOJ - 6277 

    分块模板题:lazy[i] 表示第i块整体的更新量

    单点询问:res = a[x] + lazy[belong[x]]

    #include<map>
    #include<set>
    #include<cmath>
    #include<deque>
    #include<queue>
    #include<stack>
    #include<string>
    #include<bitset>
    #include<cstdio>
    #include<vector>
    #include<iomanip>
    #include<cstring>
    #include<sstream>
    #include<iostream>
    #include<algorithm>
    #include<unordered_map>
    //#include<bits/stdc++.h>
    #define fi first
    #define se second
    #define eps 1e-8
    #define ll long long
    #define ull unsigned long long
    #define pb push_back
    #define maxn 100020
    #define inf 0x3f3f3f3f
    #define INF 0x3f3f3f3f3f3f3f3f
    #define P pair<ll, ll>
    #define pi acos(-1)
    #define lson l,mid,rt*2
    #define rson mid+1,r,rt*2+1
    #define lowbit(x) (x&(-x))
    #define SZ(x) ((ll)(x).size())
    #define met(a,x) memset(a,x,sizeof(a))
    #define openin(x) freopen(x, "r", stdin)
    #define openout(x) freopen(x, "w",stdout)
    #define rep(i,a,b) for(int i = a;i <= b;i++)
    #define bep(i,a,b) for(int i = a;i >= b;i--)
    #define ios() ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
    using namespace std;
    ll mod = 1e9 + 7;
    
    inline ll read() {
        ll x = 0, sign = 1; char ch = getchar();
        for (; !isdigit(ch); ch = getchar()) if (ch == '-') sign = -1;
        for (; isdigit(ch); ch = getchar()) x = x * 10 + ch - '0';
        return sign * x;
    }
    
    
    int sz;
    int a[maxn], belong[maxn], lazy[maxn];
    int b[maxn], tag[maxn], val[maxn];
    int L[maxn], R[maxn];
    int n;
    void add(int l, int r, int c) {
        if (belong[l] == belong[r]) {
            rep(i, l, r)a[i] += c;
        }
        else {
            rep(i, belong[l] + 1, belong[r] - 1)lazy[i] += c;
            
            rep(i, l, R[belong[l]])a[i] += c;
            rep(i, L[belong[r]] , r)a[i] += c;
    
        }
    }
    int query(int x) {
        return a[x] + lazy[belong[x]];
    }
    int main() {
        n = read();
        sz = sqrt(n);
        rep(i, 1, n)a[i] = read();
        rep(i, 1, n)belong[i] = (i - 1) / sz + 1;
        int num = ceil(n * 1.0 / sz);
        rep(i, 1, num) {
            int l = (i - 1) * sz + 1, r = min(i * sz, n);
            L[i] = l, R[i] = r;
        }
        rep(i, 1, n) {
            int op, l, r, c;
            op = read(), l = read(), r = read(), c = read();
            if (op == 0)add(l, r, c);
            else {
                cout << query(r) << endl;
            }
        }
        return 0;
    }
    View Code

    B - 数列分块入门 2

     LibreOJ - 6278 

    另开数组b记录块内有序的数组a

    对于整块:二分查找小于x的元素个数

    对于非整块:暴力查找小于x的元素个数

    #include<map>
    #include<set>
    #include<cmath>
    #include<deque>
    #include<queue>
    #include<stack>
    #include<string>
    #include<bitset>
    #include<cstdio>
    #include<vector>
    #include<iomanip>
    #include<cstring>
    #include<sstream>
    #include<iostream>
    #include<algorithm>
    #include<unordered_map>
    //#include<bits/stdc++.h>
    #define fi first
    #define se second
    #define eps 1e-8
    #define ll long long
    #define ull unsigned long long
    #define pb push_back
    #define maxn 100020
    #define inf 0x3f3f3f3f
    #define INF 0x3f3f3f3f3f3f3f3f
    #define P pair<ll, ll>
    #define pi acos(-1)
    #define lson l,mid,rt*2
    #define rson mid+1,r,rt*2+1
    #define lowbit(x) (x&(-x))
    #define SZ(x) ((ll)(x).size())
    #define met(a,x) memset(a,x,sizeof(a))
    #define openin(x) freopen(x, "r", stdin)
    #define openout(x) freopen(x, "w",stdout)
    #define rep(i,a,b) for(ll i = a;i <= b;i++)
    #define bep(i,a,b) for(ll i = a;i >= b;i--)
    #define ios() ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
    using namespace std;
    ll mod = 1e9 + 7;
    ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a % b); }
    ll lcm(ll a, ll b) { return a * b / gcd(a, b); }
    inline ll read() {
        ll x = 0, sign = 1; char ch = getchar();
        for (; !isdigit(ch); ch = getchar()) if (ch == '-') sign = -1;
        for (; isdigit(ch); ch = getchar()) x = x * 10 + ch - '0';
        return sign * x;
    }
    ll bit[111];
    void Linear_basis(ll a[], int n) {
        rep(k, 1, n) {
            ll x = a[k];
            bep(i, 60, 0) {
                if ((x >> i) & 1) {//x的第i位为1
                    if (bit[i])x ^= bit[i];
                    else {
                        bit[i] = x;
                        break;
                    }
                }
            }
        }
    }
    ll qpow(ll a, ll b) {
        ll ans = 1;
        while (b) {
            if (b & 1)ans = ans * a % mod;
            a = a * a % mod;
            b >>= 1;
        }
        return ans;
    }
    struct node {
        int x, id;
        bool operator < (const node& r)const {
            return x < r.x || (x == r.x && id < r.id);
        }
    };
    int cmp1(node aa, node b) {
        return aa.x < b.x;
    }
    int cmp2(node aa, node b) {
        return aa.id < b.id;
    }
    int sz;
    ll belong[maxn], lazy[maxn];
    ll a[maxn], b[maxn];
    int L[maxn], R[maxn];
    int n;
    void add(int l, int r, ll c) {
        if (belong[l] == belong[r]) {
            rep(i, l, r)a[i] += c;
            rep(i, L[belong[l]], R[belong[l]])b[i] = a[i];
            sort(b + L[belong[l]], b + 1 + R[belong[l]]);
        }
        else {
            rep(i, belong[l] + 1, belong[r] - 1)lazy[i] += c;
    
            rep(i, l, R[belong[l]])a[i] += c;
            rep(i, L[belong[r]], r)a[i] += c;
            rep(i, L[belong[l]], R[belong[l]])b[i] = a[i];
            rep(i, L[belong[r]], R[belong[r]])b[i] = a[i];
            sort(b + L[belong[l]], b + 1 + R[belong[l]]);
            sort(b + L[belong[r]], b + 1 + R[belong[r]]);
        }
    }
    
    int query(int l, int r, ll x) {
        int sum = 0;
        if (belong[l] == belong[r]) {
            rep(i, l, r) {
                if (a[i] + lazy[belong[i]] < x)sum++;
            }
        }
        else {
            rep(i, l, R[belong[l]]) {
                if (a[i] + lazy[belong[i]] < x)sum++;
            }
            rep(i, L[belong[r]], r) {
                if (a[i] + lazy[belong[i]] < x)sum++;
            }
            rep(i, belong[l] + 1, belong[r] - 1) {
                //int pos = Find(L[i], R[i], x - lazy[i]);
                sum += lower_bound(b + L[i], b + 1 + R[i], x - lazy[i]) - b - L[i];
            }
        }
        return sum;
    }
    int main() {
        //cout << 50000 * sqrt(50000) * log(sqrt(50000)) << endl;
        n = read();
        sz = sqrt(n);
        rep(i, 1, n)belong[i] = (i - 1) / sz + 1;
        rep(i, 1, n) {
            a[i] = read();
            b[i] = a[i];
        }
        int num = ceil(n * 1.0 / sz);
        rep(i, 1, num) {
            int l = (i - 1) * sz + 1, r = min(i * sz, (ll)n);
            L[i] = l, R[i] = r;
            sort(b + l, b + 1 + r);
        }
        rep(i, 1, n) {
            ll op, l, r, c;
            op = read(), l = read(), r = read(), c = read();
            if (op == 0)add(l, r, c);
            else {
                cout << query(l, r, c * c) << endl;
            }
        }
        return 0;
    }
    /*
    5
    1 5 9 6 2
    0 1 5 1
    1 1 5 9
    1 1 5 3
    
    */
    View Code

    C - 数列分块入门 3

     LibreOJ - 6279 

    和入门2差不多,整块二分,非整块暴力

    #include<map>
    #include<set>
    #include<cmath>
    #include<deque>
    #include<queue>
    #include<stack>
    #include<string>
    #include<bitset>
    #include<cstdio>
    #include<vector>
    #include<iomanip>
    #include<cstring>
    #include<sstream>
    #include<iostream>
    #include<algorithm>
    #include<unordered_map>
    //#include<bits/stdc++.h>
    #define fi first
    #define se second
    #define eps 1e-8
    #define ll long long
    #define ull unsigned long long
    #define pb push_back
    #define maxn 100020
    #define inf 0x3f3f3f3f
    #define INF 0x3f3f3f3f3f3f3f3f
    #define P pair<ll, ll>
    #define pi acos(-1)
    #define lson l,mid,rt*2
    #define rson mid+1,r,rt*2+1
    #define lowbit(x) (x&(-x))
    #define SZ(x) ((ll)(x).size())
    #define met(a,x) memset(a,x,sizeof(a))
    #define openin(x) freopen(x, "r", stdin)
    #define openout(x) freopen(x, "w",stdout)
    #define rep(i,a,b) for(ll i = a;i <= b;i++)
    #define bep(i,a,b) for(ll i = a;i >= b;i--)
    #define ios() ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
    using namespace std;
    ll mod = 1e9 + 7;
    ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a % b); }
    ll lcm(ll a, ll b) { return a * b / gcd(a, b); }
    inline ll read() {
        ll x = 0, sign = 1; char ch = getchar();
        for (; !isdigit(ch); ch = getchar()) if (ch == '-') sign = -1;
        for (; isdigit(ch); ch = getchar()) x = x * 10 + ch - '0';
        return sign * x;
    }
    ll bit[111];
    void Linear_basis(ll a[], int n) {
        rep(k, 1, n) {
            ll x = a[k];
            bep(i, 60, 0) {
                if ((x >> i) & 1) {//x的第i位为1
                    if (bit[i])x ^= bit[i];
                    else {
                        bit[i] = x;
                        break;
                    }
                }
            }
        }
    }
    ll qpow(ll a, ll b) {
        ll ans = 1;
        while (b) {
            if (b & 1)ans = ans * a % mod;
            a = a * a % mod;
            b >>= 1;
        }
        return ans;
    }
    int sz;
    ll belong[maxn], lazy[maxn];
    ll a[maxn], b[maxn];
    int L[maxn], R[maxn];
    int n;
    void add(int l, int r, ll c) {
        if (belong[l] == belong[r]) {
            rep(i, l, r)a[i] += c;
            rep(i, L[belong[l]], R[belong[l]])b[i] = a[i];
            sort(b + L[belong[l]], b + 1 + R[belong[l]]);
        }
        else {
            rep(i, belong[l] + 1, belong[r] - 1)lazy[i] += c;
    
            rep(i, l, R[belong[l]])a[i] += c;
            rep(i, L[belong[r]], r)a[i] += c;
            rep(i, L[belong[l]], R[belong[l]])b[i] = a[i];
            rep(i, L[belong[r]], R[belong[r]])b[i] = a[i];
            sort(b + L[belong[l]], b + 1 + R[belong[l]]);
            sort(b + L[belong[r]], b + 1 + R[belong[r]]);
        }
    }
    
    int query(int l, int r, ll x) {
        ll res = -1;
        if (belong[l] == belong[r]) {
            rep(i, l, r) {
                if (a[i] + lazy[belong[i]] < x) {
                    res = max(res, a[i] + lazy[belong[i]]);
                }
            }
        }
        else {
            rep(i, l, R[belong[l]]) {
                if (a[i] + lazy[belong[i]] < x) {
                    res = max(res, a[i] + lazy[belong[i]]);
                }
            }
            rep(i, L[belong[r]], r) {
                if (a[i] + lazy[belong[i]] < x) {
                    res = max(res, a[i] + lazy[belong[i]]);
                }
            }
            rep(i, belong[l] + 1, belong[r] - 1) {
                int pos = lower_bound(b + L[i], b + 1 + R[i], x - lazy[i]) - b;
                if (pos != L[i])res = max(res, b[pos-1] + lazy[i]);
            }
        }
        return res;
    }
    int main() {
        n = read();
        sz = sqrt(n);
        rep(i, 1, n)belong[i] = (i - 1) / sz + 1;
        rep(i, 1, n) {
            a[i] = read();
            b[i] = a[i];
        }
        int num = ceil(n * 1.0 / sz);
        rep(i, 1, num) {
            int l = (i - 1) * sz + 1, r = min(i * sz, (ll)n);
            L[i] = l, R[i] = r;
            sort(b + l, b + 1 + r);
        }
        rep(i, 1, n) {
            ll op, l, r, c;
            op = read(), l = read(), r = read(), c = read();
            if (op == 0)add(l, r, c);
            else {
                cout << query(l, r, c) << endl;
            }
        }
        return 0;
    }
    /*
    5
    1 5 9 6 2
    0 1 5 1
    1 1 5 9
    1 1 5 3
    
    */
    View Code

    D - 数列分块入门 4

     LibreOJ - 6280 

    lazy[i] 表示第i块的更新量

    sum[i] 代表第i块的和

    区间求和:

    整块:res += sum[belong[x]] + sz * lazy[belong[x]]

    非整块:res += a[x] + lazy[belong[x]]

    #include<map>
    #include<set>
    #include<cmath>
    #include<deque>
    #include<queue>
    #include<stack>
    #include<string>
    #include<bitset>
    #include<cstdio>
    #include<vector>
    #include<iomanip>
    #include<cstring>
    #include<sstream>
    #include<iostream>
    #include<algorithm>
    #include<unordered_map>
    //#include<bits/stdc++.h>
    #define fi first
    #define se second
    #define eps 1e-8
    #define ll long long
    #define ull unsigned long long
    #define pb push_back
    #define maxn 100020
    #define inf 0x3f3f3f3f
    #define INF 0x3f3f3f3f3f3f3f3f
    #define P pair<ll, ll>
    #define pi acos(-1)
    #define lson l,mid,rt*2
    #define rson mid+1,r,rt*2+1
    #define lowbit(x) (x&(-x))
    #define SZ(x) ((ll)(x).size())
    #define met(a,x) memset(a,x,sizeof(a))
    #define openin(x) freopen(x, "r", stdin)
    #define openout(x) freopen(x, "w",stdout)
    #define rep(i,a,b) for(ll i = a;i <= b;i++)
    #define bep(i,a,b) for(ll i = a;i >= b;i--)
    #define ios() ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
    using namespace std;
    ll mod = 1e9 + 7;
    ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a % b); }
    ll lcm(ll a, ll b) { return a * b / gcd(a, b); }
    inline ll read() {
        ll x = 0, sign = 1; char ch = getchar();
        for (; !isdigit(ch); ch = getchar()) if (ch == '-') sign = -1;
        for (; isdigit(ch); ch = getchar()) x = x * 10 + ch - '0';
        return sign * x;
    }
    ll bit[111];
    void Linear_basis(ll a[], int n) {
        rep(k, 1, n) {
            ll x = a[k];
            bep(i, 60, 0) {
                if ((x >> i) & 1) {//x的第i位为1
                    if (bit[i])x ^= bit[i];
                    else {
                        bit[i] = x;
                        break;
                    }
                }
            }
        }
    }
    ll qpow(ll a, ll b) {
        ll ans = 1;
        while (b) {
            if (b & 1)ans = ans * a % mod;
            a = a * a % mod;
            b >>= 1;
        }
        return ans;
    }
    int sz;
    ll belong[maxn], lazy[maxn],sum[maxn];
    ll a[maxn], b[maxn];
    int L[maxn], R[maxn];
    int n;
    void add(int l, int r, ll c) {
        if (belong[l] == belong[r]) {
            rep(i, l, r) {
                a[i] += c;
                sum[belong[l]] += c;
            }
            //rep(i, L[belong[l]], R[belong[l]])b[i] = a[i];
            //sort(b + L[belong[l]], b + 1 + R[belong[l]]);
        }
        else {
            rep(i, belong[l] + 1, belong[r] - 1)lazy[i] += c;
    
            rep(i, l, R[belong[l]]) {
                a[i] += c;
                sum[belong[l]] += c;
            }
            rep(i, L[belong[r]], r) {
                a[i] += c;
                sum[belong[r]] += c;
            }
            /*rep(i, L[belong[l]], R[belong[l]])b[i] = a[i];
            rep(i, L[belong[r]], R[belong[r]])b[i] = a[i];
            sort(b + L[belong[l]], b + 1 + R[belong[l]]);
            sort(b + L[belong[r]], b + 1 + R[belong[r]]);*/
        }
    }
    
    int query(int l, int r, ll x) {
        ll res = 0;
        if (belong[l] == belong[r]) {
            rep(i, l, r) {
                res = (res + a[i] + lazy[belong[i]]) % x;
            }
        }
        else {
            rep(i, l, R[belong[l]]) {
                res = (res + a[i] + lazy[belong[i]]) % x;
            }
            rep(i, L[belong[r]], r) {
                res = (res + a[i] + lazy[belong[i]]) % x;
            }
            rep(i, belong[l] + 1, belong[r] - 1) {
                res = (res + sum[i] + sz * lazy[i]) % x;
            }
        }
        return res;
    }
    int main() {
        n = read();
        sz = sqrt(n);
        rep(i, 1, n)belong[i] = (i - 1) / sz + 1;
        rep(i, 1, n) {
            a[i] = read();
            //b[i] = a[i];
        }
        int num = ceil(n * 1.0 / sz);
        rep(i, 1, num) {
            int l = (i - 1) * sz + 1, r = min(i * sz, (ll)n);
            L[i] = l, R[i] = r;
            rep(j, l, r)sum[i] += a[j];
            //sort(b + l, b + 1 + r);
        }
        rep(i, 1, n) {
            ll op, l, r, c;
            op = read(), l = read(), r = read(), c = read();
            if (op == 0)add(l, r, c);
            else {
                cout << query(l, r, c+1) << endl;
            }
        }
        return 0;
    }
    /*
    5
    1 5 9 6 2
    0 1 5 1
    1 1 5 9
    1 1 5 3
    
    */
    View Code

    E - 数列分块入门 5

     LibreOJ - 6281 

    n <= 50000,每个数最多开方4次就会变为1

    sum[i]数组表示第i块的和

    整块:tag[i]记录第i块更新了多少次,若超过4次则啥都不干,否则暴力更新一下,记得更新sum

    非整块:暴力更新

    区间求和:整块用sum数组,非整块暴力求和

    #include<map>
    #include<set>
    #include<cmath>
    #include<deque>
    #include<queue>
    #include<stack>
    #include<string>
    #include<bitset>
    #include<cstdio>
    #include<vector>
    #include<iomanip>
    #include<cstring>
    #include<sstream>
    #include<iostream>
    #include<algorithm>
    #include<unordered_map>
    //#include<bits/stdc++.h>
    #define fi first
    #define se second
    #define eps 1e-8
    #define ll long long
    #define ull unsigned long long
    #define pb push_back
    #define maxn 100020
    #define inf 0x3f3f3f3f
    #define INF 0x3f3f3f3f3f3f3f3f
    #define P pair<ll, ll>
    #define pi acos(-1)
    #define lson l,mid,rt*2
    #define rson mid+1,r,rt*2+1
    #define lowbit(x) (x&(-x))
    #define SZ(x) ((ll)(x).size())
    #define met(a,x) memset(a,x,sizeof(a))
    #define openin(x) freopen(x, "r", stdin)
    #define openout(x) freopen(x, "w",stdout)
    #define rep(i,a,b) for(ll i = a;i <= b;i++)
    #define bep(i,a,b) for(ll i = a;i >= b;i--)
    #define ios() ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
    using namespace std;
    ll mod = 1e9 + 7;
    ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a % b); }
    ll lcm(ll a, ll b) { return a * b / gcd(a, b); }
    inline ll read() {
        ll x = 0, sign = 1; char ch = getchar();
        for (; !isdigit(ch); ch = getchar()) if (ch == '-') sign = -1;
        for (; isdigit(ch); ch = getchar()) x = x * 10 + ch - '0';
        return sign * x;
    }
    ll bit[111];
    void Linear_basis(ll a[], int n) {
        rep(k, 1, n) {
            ll x = a[k];
            bep(i, 60, 0) {
                if ((x >> i) & 1) {//x的第i位为1
                    if (bit[i])x ^= bit[i];
                    else {
                        bit[i] = x;
                        break;
                    }
                }
            }
        }
    }
    ll qpow(ll a, ll b) {
        ll ans = 1;
        while (b) {
            if (b & 1)ans = ans * a % mod;
            a = a * a % mod;
            b >>= 1;
        }
        return ans;
    }
    int sz;
    ll belong[maxn], lazy[maxn],sum[maxn],tag[maxn];
    ll a[maxn], b[maxn];
    int L[maxn], R[maxn];
    int n;
    void add(int l, int r, ll c) {
        if (belong[l] == belong[r]) {
            rep(i, l, r) {
                a[i] += c;
                sum[belong[l]] += c;
            }
            //rep(i, L[belong[l]], R[belong[l]])b[i] = a[i];
            //sort(b + L[belong[l]], b + 1 + R[belong[l]]);
        }
        else {
            rep(i, belong[l] + 1, belong[r] - 1)lazy[i] += c;
    
            rep(i, l, R[belong[l]]) {
                a[i] += c;
                sum[belong[l]] += c;
            }
            rep(i, L[belong[r]], r) {
                a[i] += c;
                sum[belong[r]] += c;
            }
            /*rep(i, L[belong[l]], R[belong[l]])b[i] = a[i];
            rep(i, L[belong[r]], R[belong[r]])b[i] = a[i];
            sort(b + L[belong[l]], b + 1 + R[belong[l]]);
            sort(b + L[belong[r]], b + 1 + R[belong[r]]);*/
        }
    }
    void update(int l, int r) {
        if (belong[l] == belong[r]) {
            rep(i, l, r) {
                ll x = sqrt(a[i]);
                sum[belong[i]] -= a[i] - x;
                a[i] = x;
            }
        }
        else {
            rep(i, l, R[belong[l]]) {
                ll x = sqrt(a[i]);
                sum[belong[i]] -= a[i] - x;
                a[i] = x;
            }
            rep(i, L[belong[r]], r) {
                ll x = sqrt(a[i]);
                sum[belong[i]] -= a[i] - x;
                a[i] = x;
            }
            rep(i, belong[l] + 1, belong[r] - 1) {
                if (tag[i] > 4)continue;
                else {
                    tag[i]++;
                    rep(j, L[i], R[i]) {
                        ll x = sqrt(a[j]);
                        sum[i] -= a[j] - x;
                        a[j] = x;
                    }
                }
            }
        }
    }
    int query(int l, int r) {
        ll res = 0;
        if (belong[l] == belong[r]) {
            rep(i, l, r) {
                res += a[i];
            }
        }
        else {
            rep(i, l, R[belong[l]]) {
                res += a[i];
            }
            rep(i, L[belong[r]], r) {
                res += a[i];
            }
            rep(i, belong[l] + 1, belong[r] - 1) {
                res += sum[i];
            }
        }
        return res;
    }
    int main() {
        n = read();
        sz = sqrt(n);
        rep(i, 1, n) belong[i] = (i - 1) / sz + 1;
        rep(i, 1, n) a[i] = read();
        int num = ceil(n * 1.0 / sz);
        rep(i, 1, num) {
            int l = (i - 1) * sz + 1, r = min(i * sz, (ll)n);
            L[i] = l, R[i] = r;
            rep(j, l, r)sum[i] += a[j];
        }
        rep(i, 1, n) {
            ll op, l, r, c;
            op = read(), l = read(), r = read(), c = read();
            if (op == 0)update(l, r);
            else {
                cout << query(l, r) << endl;
            }
        }
        return 0;
    }
    /*
    5
    1 5 9 6 2
    0 1 5 1
    1 1 5 9
    1 1 5 3
    
    */
    View Code

    F - 数列分块入门 6

     LibreOJ - 6282 

    初始sqrt(n)分块,若插入后某块的元素个数大于sqrt(2*n),便将该块进行一分为二

    插入用vector进行插入

    #include<map>
    #include<set>
    #include<cmath>
    #include<deque>
    #include<queue>
    #include<stack>
    #include<string>
    #include<bitset>
    #include<cstdio>
    #include<vector>
    #include<iomanip>
    #include<cstring>
    #include<sstream>
    #include<iostream>
    #include<algorithm>
    #include<unordered_map>
    //#include<bits/stdc++.h>
    #define fi first
    #define se second
    #define eps 1e-8
    #define ll long long
    #define ull unsigned long long
    #define pb push_back
    #define maxn 100020
    #define inf 0x3f3f3f3f
    #define INF 0x3f3f3f3f3f3f3f3f
    #define P pair<ll, ll>
    #define pi acos(-1)
    #define lson l,mid,rt*2
    #define rson mid+1,r,rt*2+1
    #define lowbit(x) (x&(-x))
    #define SZ(x) ((ll)(x).size())
    #define met(a,x) memset(a,x,sizeof(a))
    #define openin(x) freopen(x, "r", stdin)
    #define openout(x) freopen(x, "w",stdout)
    #define rep(i,a,b) for(ll i = a;i <= b;i++)
    #define bep(i,a,b) for(ll i = a;i >= b;i--)
    #define ios() ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
    using namespace std;
    ll mod = 10007;
    ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a % b); }
    ll lcm(ll a, ll b) { return a * b / gcd(a, b); }
    inline ll read() {
        ll x = 0, sign = 1; char ch = getchar();
        for (; !isdigit(ch); ch = getchar()) if (ch == '-') sign = -1;
        for (; isdigit(ch); ch = getchar()) x = x * 10 + ch - '0';
        return sign * x;
    }
    ll bit[111];
    void Linear_basis(ll a[], int n) {
        rep(k, 1, n) {
            ll x = a[k];
            bep(i, 60, 0) {
                if ((x >> i) & 1) {//x的第i位为1
                    if (bit[i])x ^= bit[i];
                    else {
                        bit[i] = x;
                        break;
                    }
                }
            }
        }
    }
    ll qpow(ll a, ll b) {
        ll ans = 1;
        while (b) {
            if (b & 1)ans = ans * a % mod;
            a = a * a % mod;
            b >>= 1;
        }
        return ans;
    }
    int sz;
    int belong[maxn], prod[maxn],sum[maxn],tag[maxn];
    int a[maxn], b[maxn],val[maxn],vis[maxn];
    int L[maxn], R[maxn];
    int cnt[maxn];
    int n,num,up;
    vector<int>v[maxn];
    void divide(int id) {
        bep(i, num + 1, id+2)v[i] = v[i - 1];
        int x1 = SZ(v[id]) / 2, x2 = SZ(v[id]) - x1;
        v[id + 1].clear();
        for (int i = x1; i < SZ(v[id]); i++)v[id + 1].push_back(v[id][i]);
        while (SZ(v[id]) > x1)v[id].pop_back();
        num++;
    }
    void Insert(int pos, int x) { //pos前插入x
        rep(i, 1, num) {
            if (pos > SZ(v[i])) {
                pos -= SZ(v[i]);
            }
            else {
                v[i].insert(v[i].begin() + pos - 1, x);
                if(SZ(v[i]) > up)divide(i);
                return;
            }
        }
    }
    int query(int x) { //a[x]
        int ans = 0;
        rep(i, 1, num) {
            if (x > SZ(v[i])) {
                x -= SZ(v[i]);
            }
            else {
                ans = v[i][x-1];
                break;
            }
        }
        return ans;
    }
    int main() {
        n = read();
        sz = sqrt(n);
        up = sqrt(n * 2);
        rep(i, 1, n) {
            belong[i] = (i - 1) / sz + 1;
            a[i] = read();
        }
        num = ceil(n * 1.0 / sz);
        rep(i, 1, num) {
            int l = (i - 1) * sz + 1, r = min(i * sz, (ll)n);
            L[i] = l, R[i] = r;
            rep(j, L[i], R[i]) {
                v[i].push_back(a[j]);
            }
        }
        rep(i, 1, n) {
            int op, l, r, c;
            op = read(), l = read(), r = read(), c = read();
            if (op == 0)Insert(l, r);
            else cout << query(r) << endl;
        }
        return 0;
    }
    /*
    
    
    */
    View Code

    G - 数列分块入门 7

     LibreOJ - 6283 

      

      上述Y分成前后两部分

      prod[i]代表第i块的前半部分,sum[i]代表第i块的右半部分

      单点询问:res = a[x] * prod[belong[x]] + sum[belong[x]]

    #include<map>
    #include<set>
    #include<cmath>
    #include<deque>
    #include<queue>
    #include<stack>
    #include<string>
    #include<bitset>
    #include<cstdio>
    #include<vector>
    #include<iomanip>
    #include<cstring>
    #include<sstream>
    #include<iostream>
    #include<algorithm>
    #include<unordered_map>
    //#include<bits/stdc++.h>
    #define fi first
    #define se second
    #define eps 1e-8
    #define ll long long
    #define ull unsigned long long
    #define pb push_back
    #define maxn 100020
    #define inf 0x3f3f3f3f
    #define INF 0x3f3f3f3f3f3f3f3f
    #define P pair<ll, ll>
    #define pi acos(-1)
    #define lson l,mid,rt*2
    #define rson mid+1,r,rt*2+1
    #define lowbit(x) (x&(-x))
    #define SZ(x) ((ll)(x).size())
    #define met(a,x) memset(a,x,sizeof(a))
    #define openin(x) freopen(x, "r", stdin)
    #define openout(x) freopen(x, "w",stdout)
    #define rep(i,a,b) for(ll i = a;i <= b;i++)
    #define bep(i,a,b) for(ll i = a;i >= b;i--)
    #define ios() ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
    using namespace std;
    ll mod = 10007;
    ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a % b); }
    ll lcm(ll a, ll b) { return a * b / gcd(a, b); }
    inline ll read() {
        ll x = 0, sign = 1; char ch = getchar();
        for (; !isdigit(ch); ch = getchar()) if (ch == '-') sign = -1;
        for (; isdigit(ch); ch = getchar()) x = x * 10 + ch - '0';
        return sign * x;
    }
    ll bit[111];
    void Linear_basis(ll a[], int n) {
        rep(k, 1, n) {
            ll x = a[k];
            bep(i, 60, 0) {
                if ((x >> i) & 1) {//x的第i位为1
                    if (bit[i])x ^= bit[i];
                    else {
                        bit[i] = x;
                        break;
                    }
                }
            }
        }
    }
    ll qpow(ll a, ll b) {
        ll ans = 1;
        while (b) {
            if (b & 1)ans = ans * a % mod;
            a = a * a % mod;
            b >>= 1;
        }
        return ans;
    }
    int sz;
    int belong[maxn], prod[maxn],sum[maxn],tag[maxn];
    int a[maxn], b[maxn];
    int L[maxn], R[maxn];
    int n;
    int query(int x) {
        return (a[x] * prod[belong[x]] + sum[belong[x]])% mod;
    }
    void add(int l, int r, int c) {
        if (belong[l] == belong[r]) {
            rep(i, L[belong[l]], R[belong[l]]) {
                a[i] = query(i);
                if (i >= l && i <= r)a[i] = (a[i] + c) % mod;
            }
            sum[belong[l]] = 0;
            prod[belong[l]] = 1;
        }
        else {
            rep(i, L[belong[l]], R[belong[l]]) {
                a[i] = query(i);
                if (i >= l && i <= R[belong[l]])a[i] = (a[i] + c) % mod;
            }
            rep(i, L[belong[r]], R[belong[r]]) {
                a[i] = query(i);
                if (i >= L[belong[r]] && i <= r)a[i] = (a[i] + c) % mod;
            }
            sum[belong[l]] = sum[belong[r]] = 0;
            prod[belong[l]] = prod[belong[r]] = 1;
            
    rep(i, belong[l] + 1, belong[r] - 1)sum[i] = (sum[i] + c) % mod;
            
        }
    }
    void mul(int l, int r,int c) {
        if (belong[l] == belong[r]) {
            rep(i, L[belong[l]], R[belong[l]]) {
                a[i] = query(i);
                if (i >= l && i <= r)a[i] = a[i] * c % mod;
            }
            sum[belong[l]] = 0;
            prod[belong[l]] = 1;
        }
        else {
            rep(i, L[belong[l]], R[belong[l]]) {
                a[i] = query(i);
                if (i >= l && i <= R[belong[l]])a[i] = (a[i] * c) % mod;
            }
            rep(i, L[belong[r]], R[belong[r]]) {
                a[i] = query(i);
                if (i >= L[belong[r]] && i <= r)a[i] = (a[i] * c) % mod;
            }
            sum[belong[l]] = sum[belong[r]] = 0;
            prod[belong[l]] = prod[belong[r]] = 1;
            
            rep(i, belong[l] + 1, belong[r] - 1) {
                prod[i] = prod[i] * c % mod;
                sum[i] = sum[i] * c % mod;
            }
        }
    }
    int main() {
        n = read();
        sz = sqrt(n);
        rep(i, 1, n) belong[i] = (i - 1) / sz + 1;
        rep(i, 1, n) {
            a[i] = read();
            a[i] %= mod;
        }
        int num = ceil(n * 1.0 / sz);
        rep(i, 1, num) {
            int l = (i - 1) * sz + 1, r = min(i * sz, (ll)n);
            L[i] = l, R[i] = r;
            prod[i] = 1;
        }
        rep(i, 1, n) {
            int op,l, r, c;
            op = read(),l = read(), r = read(), c = read();
            c %= mod;
            if (op == 0)add(l, r, c);
            else if (op == 1)mul(l, r, c);
            else if (op == 2)cout << query(r) << endl;
           /* rep(j, 1, n)cout << query(j) << ' ';
            cout << endl;
            rep(j, 1, n)cout << a[j] << ' ';
            cout << endl;
            rep(j, 1, num)cout << sum[j] << ' ';
            cout << endl;
            rep(j, 1, num)cout << prod[j] << ' ';
            cout << endl;*/
        }
        return 0;
    }
    /*
    5 
    1 2 3 5 4
    0 1 5 1
    0 1 5 1
    1 1 5 2
    0 1 5 4
    1 1 5 2
    
    
    */
    View Code

    H - 数列分块入门 8

     LibreOJ - 6284 

    tag[i]标记第i块内是否全为同一个值

    #include<map>
    #include<set>
    #include<cmath>
    #include<deque>
    #include<queue>
    #include<stack>
    #include<string>
    #include<bitset>
    #include<cstdio>
    #include<vector>
    #include<iomanip>
    #include<cstring>
    #include<sstream>
    #include<iostream>
    #include<algorithm>
    #include<unordered_map>
    //#include<bits/stdc++.h>
    #define fi first
    #define se second
    #define eps 1e-8
    #define ll long long
    #define ull unsigned long long
    #define pb push_back
    #define maxn 100020
    #define inf 0x3f3f3f3f
    #define INF 0x3f3f3f3f3f3f3f3f
    #define P pair<ll, ll>
    #define pi acos(-1)
    #define lson l,mid,rt*2
    #define rson mid+1,r,rt*2+1
    #define lowbit(x) (x&(-x))
    #define SZ(x) ((ll)(x).size())
    #define met(a,x) memset(a,x,sizeof(a))
    #define openin(x) freopen(x, "r", stdin)
    #define openout(x) freopen(x, "w",stdout)
    #define rep(i,a,b) for(ll i = a;i <= b;i++)
    #define bep(i,a,b) for(ll i = a;i >= b;i--)
    #define ios() ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
    using namespace std;
    ll mod = 1e9 + 7;
    ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a % b); }
    ll lcm(ll a, ll b) { return a * b / gcd(a, b); }
    inline ll read() {
        ll x = 0, sign = 1; char ch = getchar();
        for (; !isdigit(ch); ch = getchar()) if (ch == '-') sign = -1;
        for (; isdigit(ch); ch = getchar()) x = x * 10 + ch - '0';
        return sign * x;
    }
    ll bit[111];
    void Linear_basis(ll a[], int n) {
        rep(k, 1, n) {
            ll x = a[k];
            bep(i, 60, 0) {
                if ((x >> i) & 1) {//x的第i位为1
                    if (bit[i])x ^= bit[i];
                    else {
                        bit[i] = x;
                        break;
                    }
                }
            }
        }
    }
    ll qpow(ll a, ll b) {
        ll ans = 1;
        while (b) {
            if (b & 1)ans = ans * a % mod;
            a = a * a % mod;
            b >>= 1;
        }
        return ans;
    }
    int sz;
    ll belong[maxn], lazy[maxn],sum[maxn],tag[maxn];
    ll a[maxn], b[maxn];
    int L[maxn], R[maxn];
    int n;
    void add(int l, int r, ll c) {
        if (belong[l] == belong[r]) {
            rep(i, l, r) {
                a[i] += c;
                sum[belong[l]] += c;
            }
            //rep(i, L[belong[l]], R[belong[l]])b[i] = a[i];
            //sort(b + L[belong[l]], b + 1 + R[belong[l]]);
        }
        else {
            rep(i, belong[l] + 1, belong[r] - 1)lazy[i] += c;
    
            rep(i, l, R[belong[l]]) {
                a[i] += c;
                sum[belong[l]] += c;
            }
            rep(i, L[belong[r]], r) {
                a[i] += c;
                sum[belong[r]] += c;
            }
            /*rep(i, L[belong[l]], R[belong[l]])b[i] = a[i];
            rep(i, L[belong[r]], R[belong[r]])b[i] = a[i];
            sort(b + L[belong[l]], b + 1 + R[belong[l]]);
            sort(b + L[belong[r]], b + 1 + R[belong[r]]);*/
        }
    }
    void update(int l, int r) {
        if (belong[l] == belong[r]) {
            rep(i, l, r) {
                ll x = sqrt(a[i]);
                sum[belong[i]] -= a[i] - x;
                a[i] = x;
            }
        }
        else {
            rep(i, l, R[belong[l]]) {
                ll x = sqrt(a[i]);
                sum[belong[i]] -= a[i] - x;
                a[i] = x;
            }
            rep(i, L[belong[r]], r) {
                ll x = sqrt(a[i]);
                sum[belong[i]] -= a[i] - x;
                a[i] = x;
            }
            rep(i, belong[l] + 1, belong[r] - 1) {
                if (tag[i] > 4)continue;
                else {
                    tag[i]++;
                    rep(j, L[i], R[i]) {
                        ll x = sqrt(a[j]);
                        sum[i] -= a[j] - x;
                        a[j] = x;
                    }
                }
            }
        }
    }
    int query(int l, int r,ll c) {
        ll res = 0;
        if (belong[l] == belong[r]) {
            if (tag[belong[l]] == INF) {
                rep(i, l, r) {
                    if (a[i] == c)res++;
                    else a[i] = c;
                }
            }
            else if(tag[belong[l]] == c){
                res = r - l + 1;
            }
            else {
                res = 0;
                rep(i, L[belong[l]], R[belong[l]]) {
                    if (i >= l && i <= r)a[i] = c;
                    else a[i] = tag[belong[i]];
                }
                tag[belong[l]] = INF;
            }
        }
        else {
            if (tag[belong[l]] == INF) {
                rep(i, l, R[belong[l]]) {
                    if (a[i] == c)res++;
                    else a[i] = c;
                }
            }
            else if (tag[belong[l]] == c) {
                res += R[belong[l]] - l + 1;
            }
            else {
                res += 0;
                rep(i, L[belong[l]], R[belong[l]]) {
                    if (i >= l && i <= R[belong[l]])a[i] = c;
                    else a[i] = tag[belong[i]];
                }
                tag[belong[l]] = INF;
            }
            if (tag[belong[r]] == INF) {
                rep(i, L[belong[r]], r) {
                    if (a[i] == c)res++;
                    else a[i] = c;
                }
            }
            else if (tag[belong[r]] == c) {
                res += r - L[belong[r]] + 1;
            }
            else {
                res += 0;
                rep(i, L[belong[r]], R[belong[r]]) {
                    if (i >= L[belong[r]] && i <= r)a[i] = c;
                    else a[i] = tag[belong[i]];
                }
                tag[belong[r]] = INF;
            }
            rep(i, belong[l] + 1, belong[r] - 1) {
                if (tag[i] == INF) {
                    rep(j, L[i], R[i]) {
                        if (a[j] == c)res++;
                    }
                    tag[i] = c;
                }
                else if(tag[i] == c){
                    res += R[i] - L[i] + 1;
                }
                else {
                    res += 0;
                    tag[i] = c;
                }
            }
        }
        return res;
    }
    int main() {
        n = read();
        sz = sqrt(n);
        rep(i, 1, n) belong[i] = (i - 1) / sz + 1;
        rep(i, 1, n) a[i] = read();
        int num = ceil(n * 1.0 / sz);
        rep(i, 1, num) {
            int l = (i - 1) * sz + 1, r = min(i * sz, (ll)n);
            L[i] = l, R[i] = r;
            tag[i] = INF;
        }
        rep(i, 1, n) {
            ll l, r, c;
            l = read(), r = read(), c = read();
            cout << query(l, r, c) << endl;
        }
        return 0;
    }
    /*
    6
    1 2 2 2 5 2
    2 6 2
    2 6 2
    1 5 2
    1 6 2
    2 6 3
    4 6 3
    
    */
    View Code

    I - 数列分块入门 9

     LibreOJ - 6285 

    区间最小众数

    mode[l][r]代表第l块到第r块的最小众数

    非整块二分查找x在[l,r]出现多少次,以便更新众数

    #include<map>
    #include<set>
    #include<cmath>
    #include<deque>
    #include<queue>
    #include<stack>
    #include<string>
    #include<bitset>
    #include<cstdio>
    #include<vector>
    #include<iomanip>
    #include<cstring>
    #include<sstream>
    #include<iostream>
    #include<algorithm>
    #include<unordered_map>
    //#include<bits/stdc++.h>
    #define fi first
    #define se second
    #define eps 1e-8
    #define ll long long
    #define ull unsigned long long
    #define pb push_back
    #define maxn 100020
    #define inf 0x3f3f3f3f
    #define INF 0x3f3f3f3f3f3f3f3f
    #define P pair<ll, ll>
    #define pi acos(-1)
    #define lson l,mid,rt*2
    #define rson mid+1,r,rt*2+1
    #define lowbit(x) (x&(-x))
    #define SZ(x) ((ll)(x).size())
    #define met(a,x) memset(a,x,sizeof(a))
    #define openin(x) freopen(x, "r", stdin)
    #define openout(x) freopen(x, "w",stdout)
    #define rep(i,a,b) for(ll i = a;i <= b;i++)
    #define bep(i,a,b) for(ll i = a;i >= b;i--)
    #define ios() ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
    using namespace std;
    ll mod = 10007;
    ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a % b); }
    ll lcm(ll a, ll b) { return a * b / gcd(a, b); }
    inline ll read() {
        ll x = 0, sign = 1; char ch = getchar();
        for (; !isdigit(ch); ch = getchar()) if (ch == '-') sign = -1;
        for (; isdigit(ch); ch = getchar()) x = x * 10 + ch - '0';
        return sign * x;
    }
    ll bit[111];
    void Linear_basis(ll a[], int n) {
        rep(k, 1, n) {
            ll x = a[k];
            bep(i, 60, 0) {
                if ((x >> i) & 1) {//x的第i位为1
                    if (bit[i])x ^= bit[i];
                    else {
                        bit[i] = x;
                        break;
                    }
                }
            }
        }
    }
    ll qpow(ll a, ll b) {
        ll ans = 1;
        while (b) {
            if (b & 1)ans = ans * a % mod;
            a = a * a % mod;
            b >>= 1;
        }
        return ans;
    }
    int sz;
    int belong[maxn], prod[maxn],sum[maxn],tag[maxn];
    int a[maxn], b[maxn],val[maxn],vis[maxn];
    int L[maxn], R[maxn];
    int mode[5050][5050]; //mode[l][r]代表 块[l,r]的众数
    int cnt[maxn];
    int n,num,tot;
    vector<int>v[maxn];
    map<int, int>mp;
    void Init(int l) {
        rep(i, 1, tot)cnt[i] = 0;
        int res = 0, id = 0;
        rep(i, L[l], n) {
            cnt[a[i]]++;
            if (res < cnt[a[i]] || (res == cnt[a[i]] && val[a[i]] < val[id])) {
                res = cnt[a[i]]; id = a[i];
            }
            int r = belong[i];
            mode[l][r] = id;
        }
    }
    int Find(int l, int r, int x) {//[l,r]区间x出现多少次
        int L = lower_bound(v[x].begin(), v[x].end(), l) - v[x].begin();
        int R = upper_bound(v[x].begin(), v[x].end(), r) - v[x].begin();
        return R-L;
    }
    int query(int l,int r) { //[l,r]最小众数
        int res = 0, mx = 0;
        if (belong[l] == belong[r]) {
            rep(i, l, r) {
                if (!vis[a[i]]) {
                    vis[a[i]]++;
                    int now = Find(l, r, a[i]);
                    if (mx < now || (mx == now && val[a[i]] < val[res])) {
                        mx = now; res = a[i];
                    }
                }
            }
            rep(i, l, r)vis[a[i]] = 0;
        }
        else {
            res = mode[belong[l] + 1][belong[r] - 1];
            mx = Find(l, r, res);//res(众数)出现多少次
            rep(i, l, R[belong[l]]) {
                if (!vis[a[i]]) {
                    vis[a[i]]++;
                    int now = Find(l, r, a[i]);
                    if (mx < now || (mx == now && val[a[i]] < val[res])) {
                        mx = now; res = a[i];
                    }
                }
            }
            rep(i, L[belong[r]], r) {
                if (!vis[a[i]]) {
                    vis[a[i]]++;
                    int now = Find(l, r, a[i]);
                    if (mx < now || (mx == now && val[a[i]] < val[res])) {
                        mx = now; res = a[i];
                    }
                }
            }
            rep(i, l, R[belong[l]]) {
                vis[a[i]] = 0;
            }
            rep(i, L[belong[r]], r) {
                vis[a[i]] = 0;
            }
        }
        return val[res];
    }
    int main() {
        n = read();
        sz = sqrt(n);
        rep(i, 1, n) belong[i] = (i - 1) / sz + 1;
        rep(i, 1, n) {
            a[i] = read();
            if (!mp.count(a[i])) {
                mp[a[i]] = ++tot;
            }
            v[mp[a[i]]].push_back(i);
            val[mp[a[i]]] = a[i];
            a[i] = mp[a[i]];
        }
        num = ceil(n * 1.0 / sz);
        rep(i, 1, num) {
            int l = (i - 1) * sz + 1, r = min(i * sz, (ll)n);
            L[i] = l, R[i] = r;
            Init(i);
        }
        rep(i, 1, n) {
            int l, r;
            l = read(), r = read();
            cout << query(l, r) << endl;
        }
        return 0;
    }
    /*
    
    
    */
    View Code

    J - Group

     HDU - 4638 

    分块+莫队

    问:[l,r]区间连续的段有多少

    首先按块从小到大排序,同块以右端点从小到大排序

    #include<map>
    #include<set>
    #include<cmath>
    #include<deque>
    #include<queue>
    #include<stack>
    #include<string>
    #include<bitset>
    #include<cstdio>
    #include<vector>
    #include<iomanip>
    #include<cstring>
    #include<sstream>
    #include<iostream>
    #include<algorithm>
    #include<unordered_map>
    //#include<bits/stdc++.h>
    #define fi first
    #define se second
    #define eps 1e-8
    #define ll long long
    #define ull unsigned long long
    #define pb push_back
    #define maxn 100020
    #define inf 0x3f3f3f3f
    #define INF 0x3f3f3f3f3f3f3f3f
    #define P pair<ll, ll>
    #define pi acos(-1)
    #define lson l,mid,rt*2
    #define rson mid+1,r,rt*2+1
    #define lowbit(x) (x&(-x))
    #define SZ(x) ((ll)(x).size())
    #define met(a,x) memset(a,x,sizeof(a))
    #define openin(x) freopen(x, "r", stdin)
    #define openout(x) freopen(x, "w",stdout)
    #define rep(i,a,b) for(ll i = a;i <= b;i++)
    #define bep(i,a,b) for(ll i = a;i >= b;i--)
    #define ios() ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
    using namespace std;
    ll mod = 1e9 + 7;
    ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a % b); }
    ll lcm(ll a, ll b) { return a * b / gcd(a, b); }
    inline ll read() {
        ll x = 0, sign = 1; char ch = getchar();
        for (; !isdigit(ch); ch = getchar()) if (ch == '-') sign = -1;
        for (; isdigit(ch); ch = getchar()) x = x * 10 + ch - '0';
        return sign * x;
    }
    ll bit[111];
    void Linear_basis(ll a[], int n) {
        rep(k, 1, n) {
            ll x = a[k];
            bep(i, 60, 0) {
                if ((x >> i) & 1) {//x的第i位为1
                    if (bit[i])x ^= bit[i];
                    else {
                        bit[i] = x;
                        break;
                    }
                }
            }
        }
    }
    ll qpow(ll a, ll b) {
        ll ans = 1;
        while (b) {
            if (b & 1)ans = ans * a % mod;
            a = a * a % mod;
            b >>= 1;
        }
        return ans;
    }
    int sz;
    struct node {
        int l, r, id;
        bool operator < (const node& w)const {
            return l / sz < w.l / sz || (l / sz == w.l / sz && r < w.r);
        }
    }q[maxn];
    ll a[maxn],ans[maxn],sum[maxn];
    ll res;
    void add(int x) {
        res++;
        sum[a[x]]++;
        if (sum[a[x] - 1])res--;
        if (sum[a[x] + 1])res--;
    }
    void remove(int x) {
        res--;
        sum[a[x]]--;
        if (sum[a[x] - 1])res++;
        if (sum[a[x] + 1])res++;
    }
    int main() {
        int T = read();
        while (T--) {
            int n = read(),m = read();
            sz = sqrt(n);
            rep(i, 1, n) {
                a[i] = read();
            }
            rep(i, 1, n + 1)sum[i] = 0;
            rep(i, 1, m) {
                q[i].l = read(), q[i].r = read();
                q[i].id = i;
            }
            sort(q + 1, q + 1 + m);
            int L = 1, R = 0;
            res = 0;
            rep(i, 1, m) {
                while (R < q[i].r)add(++R);
                while (L > q[i].l)add(--L);
                while (R > q[i].r)remove(R--);
                while (L < q[i].l)remove(L++);
                ans[q[i].id] = res;
            }
            rep(i, 1, m)cout << ans[i] << endl;
        }
        return 0;
    }
    View Code

    K - D-query

     SPOJ - DQUERY 

    分块+莫队 模板题

    [l,r]区间不同的数的个数

    #include<map>
    #include<set>
    #include<cmath>
    #include<deque>
    #include<queue>
    #include<stack>
    #include<string>
    #include<bitset>
    #include<cstdio>
    #include<vector>
    #include<iomanip>
    #include<cstring>
    #include<sstream>
    #include<iostream>
    #include<algorithm>
    #include<unordered_map>
    //#include<bits/stdc++.h>
    #define fi first
    #define se second
    #define eps 1e-8
    #define ll long long
    #define ull unsigned long long
    #define pb push_back
    #define maxn 1000020
    #define inf 0x3f3f3f3f
    #define INF 0x3f3f3f3f3f3f3f3f
    #define P pair<ll, ll>
    #define pi acos(-1)
    #define lson l,mid,rt*2
    #define rson mid+1,r,rt*2+1
    #define lowbit(x) (x&(-x))
    #define SZ(x) ((ll)(x).size())
    #define met(a,x) memset(a,x,sizeof(a))
    #define openin(x) freopen(x, "r", stdin)
    #define openout(x) freopen(x, "w",stdout)
    #define rep(i,a,b) for(ll i = a;i <= b;i++)
    #define bep(i,a,b) for(ll i = a;i >= b;i--)
    #define ios() ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
    using namespace std;
    ll mod = 1e9 + 7;
    ll gcd(ll a, ll b) { return b == 0 ? a : gcd(b, a % b); }
    ll lcm(ll a, ll b) { return a * b / gcd(a, b); }
    inline ll read() {
        ll x = 0, sign = 1; char ch = getchar();
        for (; !isdigit(ch); ch = getchar()) if (ch == '-') sign = -1;
        for (; isdigit(ch); ch = getchar()) x = x * 10 + ch - '0';
        return sign * x;
    }
    ll bit[111];
    void Linear_basis(ll a[], int n) {
        rep(k, 1, n) {
            ll x = a[k];
            bep(i, 60, 0) {
                if ((x >> i) & 1) {//x的第i位为1
                    if (bit[i])x ^= bit[i];
                    else {
                        bit[i] = x;
                        break;
                    }
                }
            }
        }
    }
    ll qpow(ll a, ll b) {
        ll ans = 1;
        while (b) {
            if (b & 1)ans = ans * a % mod;
            a = a * a % mod;
            b >>= 1;
        }
        return ans;
    }
    int sz;
    struct node {
        int l, r, id;
        bool operator < (const node& w)const {
            return l / sz < w.l / sz || (l / sz == w.l / sz && r < w.r);
        }
    }q[maxn];
    ll a[maxn],query[maxn],ans[maxn],sum[maxn];
    ll res;
    void add(int x) {
        if (sum[a[x]] == 0)res++;
        sum[a[x]]++;
    }
    void remove(int x) {
        sum[a[x]]--;
        if (sum[a[x]] == 0)res--;
    }
    int main() {
        int n = read();
        sz = sqrt(n);
        rep(i, 1, n)a[i] = read();
        int m; cin >> m;
        rep(i, 1, m) {
            q[i].l = read(), q[i].r = read();
            q[i].id = i;
        }
        sort(q + 1, q + 1 + m);
        int L = 1, R = 0;
        rep(i, 1, m) {
            while (R < q[i].r)add(++R);
            while (L > q[i].l)add(--L);
            while (R > q[i].r)remove(R--);
            while (L < q[i].l)remove(L++);
            ans[q[i].id] = res;
        }
        rep(i, 1, m)cout << ans[i] << endl;
        return 0;
    }
    View Code
  • 相关阅读:
    如何在Unity中播放影片
    C# typeof()实例详解
    unity3d用鼠标拖动物体的一段代码
    unity3d中Find的用法
    geometry_msgs/PoseStamped 类型的变量的构造
    c++ ros 计算两点距离
    C++ 利用指针和数组以及指针和结构体实现一个函数返回多个值
    C++ 结构体指针的定义
    Cannot initialize a variable of type 'Stu *' with an rvalue of type 'void *'
    C++中的平方、开方、绝对值怎么计算
  • 原文地址:https://www.cnblogs.com/cherish-lin/p/13564941.html
Copyright © 2011-2022 走看看