zoukankan      html  css  js  c++  java
  • 如何使用 libtorch 实现 AlexNet 网络?

    如何使用 libtorch 实现 AlexNet 网络?

    按照图片上流程写即可。输入的图片大小必须 227x227 3 通道彩色图片

    // Define a new Module.
    struct Net : torch::nn::Module {
    	Net() {
    		conv1 = torch::nn::Conv2d(torch::nn::Conv2dOptions(3, 96, { 11,11 }).stride({4,4}));
    		conv2 = torch::nn::Conv2d(torch::nn::Conv2dOptions(96, 256, { 5,5 }).padding(2));
    		conv3 = torch::nn::Conv2d(torch::nn::Conv2dOptions(256, 384, { 3,3 }).padding(1));
    		conv4 = torch::nn::Conv2d(torch::nn::Conv2dOptions(384, 384, { 3,3 }).padding(1));
    		conv5 = torch::nn::Conv2d(torch::nn::Conv2dOptions(384, 256, { 3,3 }).padding(1));
    
    		fc1 = torch::nn::Linear(256*6*6,4096);
    		fc2 = torch::nn::Linear(4096, 4096);
    		fc3 = torch::nn::Linear(4096, 1000);
    	}
    
    	// Implement the Net's algorithm.
    	torch::Tensor forward(torch::Tensor x) {
    
    		x = conv1->forward(x);
    		x = torch::relu(x);
    		//LRN
    		x = torch::max_pool2d(x, { 3,3 }, { 2,2 });
    		x = conv2->forward(x);
    		//LRN
    		x = torch::relu(x);
    		x = torch::max_pool2d(x, { 3,3 }, { 2,2 });
    		x = conv3->forward(x);
    		x = torch::relu(x);
    		x = conv4->forward(x);
    		x = torch::relu(x);
    		x = conv5->forward(x);
    		x = torch::relu(x);
    		x = torch::max_pool2d(x, { 3,3 }, { 2,2 });
    
    		x = x.view({ x.size(0),-1 });
    		x = fc1->forward(x);
    		x = torch::relu(x);
    		x = torch::dropout(x,0.5,is_training());
    
    		x = fc2->forward(x);
    		x = torch::relu(x);
    		x = torch::dropout(x, 0.5, is_training());
    
    		x = fc3->forward(x);
    
    		x = torch::log_softmax(x,1);
    		return x;
    	}
    
    	// Use one of many "standard library" modules.
    	torch::nn::Conv2d conv1{ nullptr };
    	torch::nn::Conv2d conv2{ nullptr };
    	torch::nn::Conv2d conv3{ nullptr };
    	torch::nn::Conv2d conv4{ nullptr };
    	torch::nn::Conv2d conv5{ nullptr };
    	torch::nn::Linear fc1{ nullptr };
    	torch::nn::Linear fc2{ nullptr };
    	torch::nn::Linear fc3{ nullptr };
    };
    

    具体可参考这个

    name: "AlexNet"
    layer {
      name: "data"
      type: "Input"
      top: "data"
      input_param { shape: { dim: 10 dim: 3 dim: 227 dim: 227 } }
    }
    layer {
      name: "conv1"
      type: "Convolution"
      bottom: "data"
      top: "conv1"
      param {
        lr_mult: 1
        decay_mult: 1
      }
      param {
        lr_mult: 2
        decay_mult: 0
      }
      convolution_param {
        num_output: 96
        kernel_size: 11
        stride: 4
      }
    }
    layer {
      name: "relu1"
      type: "ReLU"
      bottom: "conv1"
      top: "conv1"
    }
    layer {
      name: "norm1"
      type: "LRN"
      bottom: "conv1"
      top: "norm1"
      lrn_param {
        local_size: 5
        alpha: 0.0001
        beta: 0.75
      }
    }
    layer {
      name: "pool1"
      type: "Pooling"
      bottom: "norm1"
      top: "pool1"
      pooling_param {
        pool: MAX
        kernel_size: 3
        stride: 2
      }
    }
    layer {
      name: "conv2"
      type: "Convolution"
      bottom: "pool1"
      top: "conv2"
      param {
        lr_mult: 1
        decay_mult: 1
      }
      param {
        lr_mult: 2
        decay_mult: 0
      }
      convolution_param {
        num_output: 256
        pad: 2
        kernel_size: 5
        group: 2
      }
    }
    layer {
      name: "relu2"
      type: "ReLU"
      bottom: "conv2"
      top: "conv2"
    }
    layer {
      name: "norm2"
      type: "LRN"
      bottom: "conv2"
      top: "norm2"
      lrn_param {
        local_size: 5
        alpha: 0.0001
        beta: 0.75
      }
    }
    layer {
      name: "pool2"
      type: "Pooling"
      bottom: "norm2"
      top: "pool2"
      pooling_param {
        pool: MAX
        kernel_size: 3
        stride: 2
      }
    }
    layer {
      name: "conv3"
      type: "Convolution"
      bottom: "pool2"
      top: "conv3"
      param {
        lr_mult: 1
        decay_mult: 1
      }
      param {
        lr_mult: 2
        decay_mult: 0
      }
      convolution_param {
        num_output: 384
        pad: 1
        kernel_size: 3
      }
    }
    layer {
      name: "relu3"
      type: "ReLU"
      bottom: "conv3"
      top: "conv3"
    }
    layer {
      name: "conv4"
      type: "Convolution"
      bottom: "conv3"
      top: "conv4"
      param {
        lr_mult: 1
        decay_mult: 1
      }
      param {
        lr_mult: 2
        decay_mult: 0
      }
      convolution_param {
        num_output: 384
        pad: 1
        kernel_size: 3
        group: 2
      }
    }
    layer {
      name: "relu4"
      type: "ReLU"
      bottom: "conv4"
      top: "conv4"
    }
    layer {
      name: "conv5"
      type: "Convolution"
      bottom: "conv4"
      top: "conv5"
      param {
        lr_mult: 1
        decay_mult: 1
      }
      param {
        lr_mult: 2
        decay_mult: 0
      }
      convolution_param {
        num_output: 256
        pad: 1
        kernel_size: 3
        group: 2
      }
    }
    layer {
      name: "relu5"
      type: "ReLU"
      bottom: "conv5"
      top: "conv5"
    }
    layer {
      name: "pool5"
      type: "Pooling"
      bottom: "conv5"
      top: "pool5"
      pooling_param {
        pool: MAX
        kernel_size: 3
        stride: 2
      }
    }
    layer {
      name: "fc6"
      type: "InnerProduct"
      bottom: "pool5"
      top: "fc6"
      param {
        lr_mult: 1
        decay_mult: 1
      }
      param {
        lr_mult: 2
        decay_mult: 0
      }
      inner_product_param {
        num_output: 4096
      }
    }
    layer {
      name: "relu6"
      type: "ReLU"
      bottom: "fc6"
      top: "fc6"
    }
    layer {
      name: "drop6"
      type: "Dropout"
      bottom: "fc6"
      top: "fc6"
      dropout_param {
        dropout_ratio: 0.5
      }
    }
    layer {
      name: "fc7"
      type: "InnerProduct"
      bottom: "fc6"
      top: "fc7"
      param {
        lr_mult: 1
        decay_mult: 1
      }
      param {
        lr_mult: 2
        decay_mult: 0
      }
      inner_product_param {
        num_output: 4096
      }
    }
    layer {
      name: "relu7"
      type: "ReLU"
      bottom: "fc7"
      top: "fc7"
    }
    layer {
      name: "drop7"
      type: "Dropout"
      bottom: "fc7"
      top: "fc7"
      dropout_param {
        dropout_ratio: 0.5
      }
    }
    layer {
      name: "fc8"
      type: "InnerProduct"
      bottom: "fc7"
      top: "fc8"
      param {
        lr_mult: 1
        decay_mult: 1
      }
      param {
        lr_mult: 2
        decay_mult: 0
      }
      inner_product_param {
        num_output: 1000
      }
    }
    layer {
      name: "prob"
      type: "Softmax"
      bottom: "fc8"
      top: "prob"
    }
    
    
  • 相关阅读:
    css3圆形修边按钮
    TinyCC的Java绑定版本 TCC4Java
    简单实用蓝色jQuery日期选择插件
    QE不是变形金刚
    javascript 进度条的几种方法
    使用Java进行 a + b = c 计算
    Javascript jquery css 写的简单进度条控件
    Drupal SellingSpace模板
    恢复Windows 10自带的微软正黑字体
    提取配置文件中无注释的内容方法--findstr
  • 原文地址:https://www.cnblogs.com/cheungxiongwei/p/10711923.html
Copyright © 2011-2022 走看看