串口dma接收配置
- 使用的芯片为stm32F407
- 接收串口为串口六
__IO uint8_t Rx_data[12]={0}; //dma数据存放数组
void Initial_UART6(unsigned long baudrate)
{
GPIO_InitTypeDef GPIO_InitStructure;
DMA_InitTypeDef DMA_InitStructure;
USART_InitTypeDef USART_InitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
//时钟使能
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOG,ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART6,ENABLE);
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2,ENABLE);//DMA2时钟使能
/********GPIO 配置**********/
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9 | GPIO_Pin_14;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_Init(GPIOG, &GPIO_InitStructure);
GPIO_PinAFConfig(GPIOG,GPIO_PinSource9,GPIO_AF_USART6); //GPIOG9复用为USART6
GPIO_PinAFConfig(GPIOG,GPIO_PinSource14,GPIO_AF_USART6); //GPIOG14复用为USART6
/**********DMA配置*************/
DMA_DeInit(DMA2_Stream2);
while (DMA_GetCmdStatus(DMA2_Stream2) != DISABLE){}//等待DMA可配置
DMA_InitStructure.DMA_Channel=DMA_Channel_5;
DMA_InitStructure.DMA_PeripheralBaseAddr=(u32)&USART6->DR;
DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)&Rx_data[0];
DMA_InitStructure.DMA_BufferSize = 12;//数据传输量
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;//外设非增量模式
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;//存储器增量模式
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;//外设数据长度:8位
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;//存储器数据长度:8位
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; //循环接收模式
DMA_InitStructure.DMA_Priority = DMA_Priority_High;//高优先级
DMA_Init(DMA2_Stream2, &DMA_InitStructure);//初始化DMA Stream
/**********串口配置*************/
USART_InitStructure.USART_BaudRate = baudrate;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No ;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_Init(USART6, &USART_InitStructure);
USART_DMACmd(USART6,USART_DMAReq_Rx,ENABLE); //使能串口6的DMA接收
/********dma传输完成中断配置***************/
NVIC_InitStructure.NVIC_IRQChannel = DMA2_Stream2_IRQn;//串口1中断通道
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority=1;//抢占优先级1
NVIC_InitStructure.NVIC_IRQChannelSubPriority =3; //子优先级3
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道使能
NVIC_Init(&NVIC_InitStructure); //根据指定的参数初始化VIC寄存器、
USART_Cmd(USART6, ENABLE); //使能串口
DMA_ITConfig(DMA2_Stream2,DMA_IT_TC,ENABLE); //开启dma接收完成中断
DMA_Cmd(DMA2_Stream2, ENABLE); //开启dma传输
}
数据错位纠正
这里我们主要使用校验的方式判断数据是否错位,可选的方法有CRC校验
以及帧头帧尾校验
。
为了方便起见并且减少计算量,我选择了帧头帧尾校验
。
DMA传输完成中断函数
void DMA2_Stream2_IRQHandler(void)
{
if(DMA_GetFlagStatus(DMA2_Stream2,DMA_IT_TCIF2) == SET)
{
//校验不通过重启dma接收
if(Rx_data[0]!=0XAA || Rx_data[11]!=0xA0) //这里我选择了0xaa作为帧头,0xa0作为帧尾。此处校验不通过
{
//printf("RX ERROR!!!
");
DMA_Cmd(DMA2_Stream2,DISABLE);
DMA_SetCurrDataCounter(DMA2_Stream2,12); //重设传输量
delay_us(500); //此处延时根据实际情况修改
DMA_Cmd(DMA2_Stream2,ENABLE);
}
else
{
printf("RX SUCCESSFUL!!!
");
}
}
DMA_ClearFlag(DMA2_Stream2, DMA_FLAG_TCIF2); //清楚标志位
}