zoukankan      html  css  js  c++  java
  • HDU 1043 Eight

    Eight

    Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 16501    Accepted Submission(s): 4542
    Special Judge


    Problem Description
    The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one tile missing. Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as:
     1  2  3  4
     5  6  7  8
     9 10 11 12
    13 14 15  x
    

    where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:
     1  2  3  4     1  2  3  4     1  2  3  4     1  2  3  4
     5  6  7  8     5  6  7  8     5  6  7  8     5  6  7  8
     9  x 10 12     9 10  x 12     9 10 11 12     9 10 11 12
    13 14 11 15    13 14 11 15    13 14  x 15    13 14 15  x
                r->            d->            r->
    

    The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively.

    Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and
    frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course).

    In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three
    arrangement.
     

    Input
    You will receive, several descriptions of configuration of the 8 puzzle. One description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within a row, where the tiles are represented by numbers 1 to 8, plus 'x'. For example, this puzzle

    1 2 3
    x 4 6
    7 5 8

    is described by this list:

    1 2 3 x 4 6 7 5 8
     

    Output
    You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string should include no spaces and start at the beginning of the line. Do not print a blank line between cases.
     

    Sample Input
    2 3 4 1 5 x 7 6 8
     

    Sample Output
    ullddrurdllurdruldr


    网上称这样的问题是八数码问题。对于八数码问题,有位大神表示八数码问题有八种境界,如果感兴趣可以点击这里

    在这里为了学习有关A*算法,所以使用的是A*算法+哈希+曼哈顿距离

    哈希是根据康托展开变形作为建表基础的,表示的是当前位在八个数中的大小位置关系乘以所在位置的权值

    简单介绍一下曼哈顿距离,即|x1 - x2| + |y1 - y2|,即在标准坐标系中是一个很好的启发式函数

    对于A*算法其实就是一个介于BFS和dijkstra算法的启发式算法。有幸看到一份对A*算法介绍的文章,写的真的很棒,如果想深入理解的话点这里。

    当然,这里我们根据A*算法思想,设置优先考虑启发式函数曼哈顿距离的参数,次优先考虑BFS的代价

    另外值得一提的是,网上同样给出了,因为无论如何移动或者是交换位置,逆序的奇偶性就不会变,所以我们求出结果的逆序数,如果一开始或者在求解过程中出现逆序数的奇偶性的改变,我们就需要否定这个方案或者输出unsolvable。

    代码如下:

    /*************************************************************************
    	> File Name: Eight_2.cpp
    	> Author: Zhanghaoran
    	> Mail: chilumanxi@xiyoulinux.org
    	> Created Time: Wed 07 Oct 2015 04:47:56 PM CST
     ************************************************************************/
    
    #include <iostream>
    #include <algorithm>
    #include <cstring>
    #include <cstdio>
    #include <cstdlib>
    #include <queue>
    #include <string>
    #include <vector>
    #include <cmath>
    
    using namespace std;
    
    struct Node{
        int Map[3][3];
        int h, g;
        int tx, ty;
        bool operator<(const Node x)const{
            return h != x.h ? h > x.h : g > x.g;
        }
        int Hash;
    };
    
    Node f;
    bool check(int a, int b){
        if(a >= 0 && a < 3 && b >= 0 && b < 3)
            return true;
        else return false;
    }
    
    int Hash[9] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320};
    
    int Suc = 322560;
    
    int vis[409115];
    int Path[500000];
    
    int di[4][2] = { {0, 1}, {0, -1}, {1, 0}, {-1, 0}};
    
    int get_hash(Node x){
        int temp[9];
        int k = 0;
    
        for(int i = 0; i < 3; i ++){
            for(int j = 0; j < 3; j ++){
                temp[k ++] = x.Map[i][j];
            }
        }
        
        int res = 0;
        for(int i = 0; i < 9; i ++){
            k = 0;
            for(int j = 0; j < i; j ++){
                if(temp[j] > temp[i])
                    k ++;
            }
            res += Hash[i] * k;
        }
    
        return res;
    }
    
    bool judge(Node x){
        int temp[9];
        int k = 0;
        for(int i = 0; i < 3; i ++){
            for(int j = 0; j < 3; j ++)
                temp[k ++] = x.Map[i][j];
        }
        int ans = 0;
    
        for(int i = 0; i < 9; i ++){
            for(int j = i + 1; j < 9; j ++){
                if(temp[j] && temp[i] && temp[i] > temp[j])
                    ans ++;
            }
        }
    
        return !(ans & 1);
    }
    
    int get_h(Node x){
        int ans = 0;
        for(int i = 0; i < 3; i ++){
            for(int j = 0; j < 3; j ++){
                if(x.Map[i][j])
                    ans += abs(i - (x.Map[i][j] - 1) / 3) + abs(j - (x.Map[i][j] - 1) % 3);       //曼哈顿距离
            }
        }
        return ans;
    }
    
    void bfs(){
        priority_queue<Node>q;
        Node temp, last;
        q.push(f);
        while(!q.empty()){
            last = q.top();
            q.pop();
            for(int i = 0; i < 4; i ++){
                temp = last;
                temp.tx += di[i][0];
                temp.ty += di[i][1];
                if(check(temp.tx, temp.ty)){
                    swap(temp.Map[temp.tx][temp.ty], temp.Map[last.tx][last.ty]);
                    temp.Hash = get_hash(temp);
                    if(vis[temp.Hash] == -1 && judge(temp)){
                        vis[temp.Hash] = i;
                        temp.g ++;
                        Path[temp.Hash] = last.Hash;
                        temp.h = get_h(temp);
                        q.push(temp);
                    }
                    if(temp.Hash == Suc)
                        return ;
                }
            }
        }
    }
    
    
    void print(){
        string str;
        str.clear();
        int ok = Suc;
        while(Path[ok] != -1){
            if(vis[ok] == 0)
                str += 'r';
            else if(vis[ok] == 1)
                str += 'l';
            else if(vis[ok] == 2)
                str += 'd';
            else     
                str += 'u';
            ok = Path[ok];
        }
        for(int i = str.size() - 1; i >= 0; i --){
            putchar(str[i]);
        }
        puts("");
    }
    
    
    int main(void){
        char str[100];
        while(gets(str) != NULL){
            int k = 0;
            memset(vis, -1, sizeof(vis));
            memset(Path, -1, sizeof(Path));
            for(int i = 0; i < 3; i ++){
                for(int j = 0; j < 3; j ++){
                    if((str[k] <= '9' && str[k] >= '0' || str[k] == 'x')){
                        if(str[k] == 'x'){
                            f.Map[i][j] = 0;
                            f.tx = i;
                            f.ty = j;
                        }
                        else
                            f.Map[i][j] = str[k] - '0';
                    }
                    else 
                        j --;
                    k ++;
                }
            }
            if(!judge(f)){
                cout << "unsolvable"<< endl;
                continue;
            }
            f.Hash = get_hash(f);
            if(f.Hash == Suc){
                puts("");
                continue;
            }
            vis[f.Hash] = 1;
            f.g = 0;
            f.h = get_h(f);
            bfs();
            print();
        }
        return 0;
    }


  • 相关阅读:
    第十一周编程作业
    第十周作业
    第九周编程作业
    第八周作业总结
    第七周作业编程
    第六周作业总结
    第五周课程总结&试验报告(三)
    第四周课程总结&试验报告(二)
    第三周总结
    java2
  • 原文地址:https://www.cnblogs.com/chilumanxi/p/5136084.html
Copyright © 2011-2022 走看看