Eight
Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 16501 Accepted Submission(s): 4542
Special Judge
Problem Description
The 15-puzzle has been around for over 100 years; even if you don't know it by that name, you've seen it. It is constructed with 15 sliding tiles, each with a number from 1 to 15 on it, and all packed into a 4 by 4 frame with one
tile missing. Let's call the missing tile 'x'; the object of the puzzle is to arrange the tiles so that they are ordered as:
where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:
The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively.
Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and
frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course).
In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three
arrangement.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 x
where the only legal operation is to exchange 'x' with one of the tiles with which it shares an edge. As an example, the following sequence of moves solves a slightly scrambled puzzle:
1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 5 6 7 8 5 6 7 8 5 6 7 8 5 6 7 8 9 x 10 12 9 10 x 12 9 10 11 12 9 10 11 12 13 14 11 15 13 14 11 15 13 14 x 15 13 14 15 x r-> d-> r->
The letters in the previous row indicate which neighbor of the 'x' tile is swapped with the 'x' tile at each step; legal values are 'r','l','u' and 'd', for right, left, up, and down, respectively.
Not all puzzles can be solved; in 1870, a man named Sam Loyd was famous for distributing an unsolvable version of the puzzle, and
frustrating many people. In fact, all you have to do to make a regular puzzle into an unsolvable one is to swap two tiles (not counting the missing 'x' tile, of course).
In this problem, you will write a program for solving the less well-known 8-puzzle, composed of tiles on a three by three
arrangement.
Input
You will receive, several descriptions of configuration of the 8 puzzle. One description is just a list of the tiles in their initial positions, with the rows listed from top to bottom, and the tiles listed from left to right within
a row, where the tiles are represented by numbers 1 to 8, plus 'x'. For example, this puzzle
1 2 3
x 4 6
7 5 8
is described by this list:
1 2 3 x 4 6 7 5 8
1 2 3
x 4 6
7 5 8
is described by this list:
1 2 3 x 4 6 7 5 8
Output
You will print to standard output either the word ``unsolvable'', if the puzzle has no solution, or a string consisting entirely of the letters 'r', 'l', 'u' and 'd' that describes a series of moves that produce a solution. The string
should include no spaces and start at the beginning of the line. Do not print a blank line between cases.
Sample Input
2 3 4 1 5 x 7 6 8
Sample Output
ullddrurdllurdruldr
网上称这样的问题是八数码问题。对于八数码问题,有位大神表示八数码问题有八种境界,如果感兴趣可以点击这里。
在这里为了学习有关A*算法,所以使用的是A*算法+哈希+曼哈顿距离
哈希是根据康托展开变形作为建表基础的,表示的是当前位在八个数中的大小位置关系乘以所在位置的权值
简单介绍一下曼哈顿距离,即|x1 - x2| + |y1 - y2|,即在标准坐标系中是一个很好的启发式函数
对于A*算法其实就是一个介于BFS和dijkstra算法的启发式算法。有幸看到一份对A*算法介绍的文章,写的真的很棒,如果想深入理解的话点这里。
当然,这里我们根据A*算法思想,设置优先考虑启发式函数曼哈顿距离的参数,次优先考虑BFS的代价
另外值得一提的是,网上同样给出了,因为无论如何移动或者是交换位置,逆序的奇偶性就不会变,所以我们求出结果的逆序数,如果一开始或者在求解过程中出现逆序数的奇偶性的改变,我们就需要否定这个方案或者输出unsolvable。
代码如下:
/************************************************************************* > File Name: Eight_2.cpp > Author: Zhanghaoran > Mail: chilumanxi@xiyoulinux.org > Created Time: Wed 07 Oct 2015 04:47:56 PM CST ************************************************************************/ #include <iostream> #include <algorithm> #include <cstring> #include <cstdio> #include <cstdlib> #include <queue> #include <string> #include <vector> #include <cmath> using namespace std; struct Node{ int Map[3][3]; int h, g; int tx, ty; bool operator<(const Node x)const{ return h != x.h ? h > x.h : g > x.g; } int Hash; }; Node f; bool check(int a, int b){ if(a >= 0 && a < 3 && b >= 0 && b < 3) return true; else return false; } int Hash[9] = {1, 1, 2, 6, 24, 120, 720, 5040, 40320}; int Suc = 322560; int vis[409115]; int Path[500000]; int di[4][2] = { {0, 1}, {0, -1}, {1, 0}, {-1, 0}}; int get_hash(Node x){ int temp[9]; int k = 0; for(int i = 0; i < 3; i ++){ for(int j = 0; j < 3; j ++){ temp[k ++] = x.Map[i][j]; } } int res = 0; for(int i = 0; i < 9; i ++){ k = 0; for(int j = 0; j < i; j ++){ if(temp[j] > temp[i]) k ++; } res += Hash[i] * k; } return res; } bool judge(Node x){ int temp[9]; int k = 0; for(int i = 0; i < 3; i ++){ for(int j = 0; j < 3; j ++) temp[k ++] = x.Map[i][j]; } int ans = 0; for(int i = 0; i < 9; i ++){ for(int j = i + 1; j < 9; j ++){ if(temp[j] && temp[i] && temp[i] > temp[j]) ans ++; } } return !(ans & 1); } int get_h(Node x){ int ans = 0; for(int i = 0; i < 3; i ++){ for(int j = 0; j < 3; j ++){ if(x.Map[i][j]) ans += abs(i - (x.Map[i][j] - 1) / 3) + abs(j - (x.Map[i][j] - 1) % 3); //曼哈顿距离 } } return ans; } void bfs(){ priority_queue<Node>q; Node temp, last; q.push(f); while(!q.empty()){ last = q.top(); q.pop(); for(int i = 0; i < 4; i ++){ temp = last; temp.tx += di[i][0]; temp.ty += di[i][1]; if(check(temp.tx, temp.ty)){ swap(temp.Map[temp.tx][temp.ty], temp.Map[last.tx][last.ty]); temp.Hash = get_hash(temp); if(vis[temp.Hash] == -1 && judge(temp)){ vis[temp.Hash] = i; temp.g ++; Path[temp.Hash] = last.Hash; temp.h = get_h(temp); q.push(temp); } if(temp.Hash == Suc) return ; } } } } void print(){ string str; str.clear(); int ok = Suc; while(Path[ok] != -1){ if(vis[ok] == 0) str += 'r'; else if(vis[ok] == 1) str += 'l'; else if(vis[ok] == 2) str += 'd'; else str += 'u'; ok = Path[ok]; } for(int i = str.size() - 1; i >= 0; i --){ putchar(str[i]); } puts(""); } int main(void){ char str[100]; while(gets(str) != NULL){ int k = 0; memset(vis, -1, sizeof(vis)); memset(Path, -1, sizeof(Path)); for(int i = 0; i < 3; i ++){ for(int j = 0; j < 3; j ++){ if((str[k] <= '9' && str[k] >= '0' || str[k] == 'x')){ if(str[k] == 'x'){ f.Map[i][j] = 0; f.tx = i; f.ty = j; } else f.Map[i][j] = str[k] - '0'; } else j --; k ++; } } if(!judge(f)){ cout << "unsolvable"<< endl; continue; } f.Hash = get_hash(f); if(f.Hash == Suc){ puts(""); continue; } vis[f.Hash] = 1; f.g = 0; f.h = get_h(f); bfs(); print(); } return 0; }