zoukankan      html  css  js  c++  java
  • The maximum-subarray problem

    package com.zkdx.test;
    
    import java.util.HashMap;
    
    /**
     * @Author: Chintsai Hwo
     * @Date: Created on 8:37 PM 6/27/2019
     */
    public class Test {
        public static void main(String[] args) {
            int[] a = {13, -3, -25, 20, -3, -16, -23, 18, 20, -7, 12, -5, -22, 15, -4, 7};
    
            // 用暴力破解法
            HashMap<Integer, Integer> indices = findIndex(a);
            System.out.println(indices);
    
            System.out.println();
    
            // 用分治法
            int[] subarray = findMaximumSubarray(a, 0, a.length - 1);
            for (int element : subarray)
                System.out.println(element + " ");
        }
    
    
        /**
         * brute-force method, which is of complexity n^2 and is not recommended.
         *
         * @param a
         * @return
         */
        private static HashMap<Integer, Integer> findIndex(int[] a) {
            HashMap<Integer, Integer> indices = new HashMap<>();
            int sum;
            int maxSum = Integer.MIN_VALUE;
            int min = 0;
            int max = 0;
            for (int i = 0; i < a.length; i++) {
                sum = 0;
                for (int j = i; j < a.length; j++) {
                    sum += a[j];
                    if (sum > maxSum) {
                        maxSum = sum;
                        max = j;
                        min = i;
                    }
                }
            }
            indices.put(min, max);
            return indices;
        }
    
        /**
         * divide-and-conquer method, which is of complexity n*lg(n) and is highly recommended.
         */
        private static int[] findMaxCrossingSubarray(int[] a) {
            int[] subarray;
            int low = 0;
            int high = a.length - 1;
            int mid = (low + high) / 2;
            int sum = 0;
            int maxLeft = mid;
            int maxRight = mid + 1;
            int leftSum = Integer.MIN_VALUE;
            int rightSum = Integer.MIN_VALUE;
            for (int i = mid; i > 0; i--) {
                sum += a[i];
                if (sum > leftSum) {
                    leftSum = sum;
                    maxLeft = i;
                }
            }
            sum = 0;
            for (int j = mid + 1; j <= high; j++) {
                sum += a[j];
                if (sum > rightSum) {
                    rightSum = sum;
                    maxRight = j;
                }
            }
            subarray = new int[]{maxLeft, maxRight, leftSum + rightSum};
            return subarray;
        }
    
        /**
         * @param a
         * @param low
         * @param high
         * @return
         */
        private static int[] findMaximumSubarray(int[] a, int low, int high) {
            int[] subarray;
            if (low == high)
                return new int[]{low, high, a[low]};
            else {
                int mid = (low + high) / 2;
                int leftLow = findMaximumSubarray(a, low, mid)[0];
                int leftHigh = findMaximumSubarray(a, low, mid)[1];
                int leftSum = findMaximumSubarray(a, low, mid)[2];
                int rightLow = findMaximumSubarray(a, mid + 1, high)[0];
                int rightHigh = findMaximumSubarray(a, mid + 1, high)[1];
                int rightSum = findMaximumSubarray(a, mid + 1, high)[2];
                int crossLow = findMaxCrossingSubarray(a)[0];
                int crossHigh = findMaxCrossingSubarray(a)[1];
                int crossSum = findMaxCrossingSubarray(a)[2];
                if (leftSum >= rightSum && leftSum >= crossSum)
                    return new int[]{leftLow, leftHigh, leftSum};
                else if (rightSum >= leftSum && rightSum >= crossSum)
                    return new int[]{rightLow, rightHigh, rightSum};
                else
                    return new int[]{crossLow, crossHigh, crossSum};
            }
        }
    }
    
    苟利国家生死以, 岂因祸福避趋之
  • 相关阅读:
    Android笔记(adb命令--reboot loader)
    Android笔记(预安装APK)
    Linux驱动学习(编写一个最简单的模块)
    const关键字与指针
    C++函数重载遇到了函数默认参数情况
    uboot环境变量分析
    ftp服务
    Samba服务
    mariadb_2 单表的增删改查
    mariadb_1 数据库介绍及基本操作
  • 原文地址:https://www.cnblogs.com/chintsai/p/11829237.html
Copyright © 2011-2022 走看看