1. 文法 G(S):
(1)S -> AB
(2)A ->Da|ε
(3)B -> cC
(4)C -> aADC |ε
(5)D -> b|ε
验证文法 G(S)是不是 LL(1)文法?
FIRST集:
FIRST(DA)={b,a}
FIRST(aADC)={a}
FIRST(D)={b}
FOLLOW集:
FOLLOW(A)={c,b,a,#}
FOLLOW(C)={#}
FOLLOW(D)={b}
SELECT集:
SELECT( A -> Da) = FIRST(Da) = { b, a }
SELECT( A -> ε) = FOLLOW( A) = { c, b, a, # }
SELECT( C -> aADC) = FIRST( aADC) = { a }
SELECT( C -> ε) = FOLLOW(C) = { # }
SELECT( D -> b) = FIRST(b) = { b }
SELECT( D -> ε ) =FOLLOW(D) = { a, # }
因为SELECT( A -> Da) ∩ SELECT( A -> ε) = { a } ≠ ∅
所以文法G(S)不是 LL(1)文法
2.(上次作业)消除左递归之后的表达式文法是否是LL(1)文法?
消除左递归后的文法:
E->TE’
E’->+TE’|ε
T->FT’
T’->*FT’|ε
F->(E)|i
SELECT集:
SELECT(E' -> +TE') = { + , ɛ }
SELECT(E' -> ɛ) = { ) , # }
SELECT(T' -> *FT' ) ={ * , ɛ }
SELECT(T' -> ɛ) = { + , ) , # }
SELECT(F -> (E) ) = { ( , i }
SELECT(F -> i ) = { i }
因为:
SELECT(E' -> +TE') ∩ SELECT(E' -> ɛ) = ∅
SELECT(T' -> *FT' ) ∩ SELECT(T' -> ɛ) = ∅
SELECT(F -> (E) ) ∩ SELECT(F -> i ) = ∅
所以:
该文法为LL(1)文法
3.接2,如果是LL(1)文法,写出它的递归下降语法分析程序代码。
E()
{T();
E'();
}
E'()
T()
T'()
F()
void E(){
if(lookhead==(,i){
T();
E’();
break;
}else{
print(“语法错误 ”);
exit(0);
}
}
void E’(){
Switch(lookhead){
case +:
MatchToken(+);
T();
E’();
break;
case ),#:
break;
default:
print(“语法错误 ”);
exit(0);
}
}
void T(){
if(lookhead==(,i){
F();
T’();
break;
}else{
print(“语法错误 ”);
exit(0);
}
}
void T’(){
Switch(lookhead){
case *:
MatchToken(*);
F();
T’();
break;
case +,),#:
break;
default:
print(“语法错误 ”);
exit(0);
}
}
void F’(){
Switch(lookhead){
case (:
MatchToken(();
E();
MatchToken());
break;
case i:
MatchToken(i);
break;
default:
print(“语法错误 ”);
exit(0);
}
}