zoukankan      html  css  js  c++  java
  • 李宏毅机器学习课程笔记-4.4概率生成模型Python实战

    本文为作者学习李宏毅机器学习课程时参照样例完成homework2的记录。

    关注我的公众号:臭咸鱼,回复LHY可获取课程PPT、数据和代码下载链接。

    代码仓库:https://github.com/chouxianyu/LHY_ML2020_Codes

    • 任务描述(Task Description)

      二分类(Binary Classification)

      根据个人资料,判断每个人的年收入是否超过50000美元。

    • 数据集描述(Dataset Description)

      • train.csv
      • test_no_label.csv
      • x_train.csv
      • Y_train.csv
      • X_test.csv
    • 参考链接

      https://colab.research.google.com/drive/1JaMKJU7hvnDoUfZjvUKzm9u-JLeX6B2C

    • 代码

      import numpy as np
      
      
      ## 文件路径
      X_train_fpath = '../data/X_train.csv'
      Y_train_fpath = '../data/Y_train.csv'
      X_test_fpath = '../data/X_test.csv'
      output_fpath = 'output.csv'
      
      
      ## 函数定义
      # 归一化
      def _normalize(X, train=True, specified_column=None, X_mean=None, X_std=None):
          # This function normalizes specific columns of X.
          # The mean and standard variance of training data will be reused when processing testing data.
          #
          # Arguments:
          #     X: data to be processed
          #     train: 'True' when processing training data, 'False' for testing data
          #     specific_column: indexes of the columns that will be normalized. If 'None', all columns
          #         will be normalized.
          #     X_mean: mean value of training data, used when train = 'False'
          #     X_std: standard deviation of training data, used when train = 'False'
          # Outputs:
          #     X: normalized data
          #     X_mean: computed mean value of training data
          #     X_std: computed standard deviation of training data
          if specified_column is None:
              specified_column = np.arange(X.shape[1])
          if train:
              X_mean = np.mean(X[:, specified_column], axis=0).reshape(1, -1)
              X_std = np.std(X[:, specified_column], axis=0).reshape(1, -1)
          X[:, specified_column] = (X[:, specified_column] - X_mean) / (X_std + 1e-8)
          return X, X_mean, X_std
      
      # 训练集划分
      def _train_valid_split(X, Y, valid_ratio=0.25):
          # This function splits data into training set and validation set.
          train_size = int(len(X) * (1 - valid_ratio))
          return X[:train_size], Y[:train_size], X[train_size:], Y[train_size:]
      
      # sigmoid函数
      def _sigmoid(z):
          # Sigmoid function can be used to calculate probability.
          # To avoid overflow, minimum/maximum output value is set.
          return np.clip(1.0 / (1.0 + np.exp(-z)), 1e-8, 1 - ( 1e-8))
      
      # forward
      def _f(X, w, b):
          # This is the logistic regression function, parameterized by w and b
          #
          # Arguements:
          #     X: input data, shape = [batch_size, data_dimension]
          #     w: weight vector, shape = [data_dimension, ]
          #     b: bias, scalar
          # Output:
          #     predicted probability of each row of X being positively labeled, shape = [batch_size, ]
          return _sigmoid(np.matmul(X, w) + b)
      
      # 预测
      def _predict(X, w, b):
          # This function returns a truth value prediction for each row of X 
          # by rounding the result of logistic regression function.
          return np.round(_f(X, w, b)).astype(np.int)
      
      # 计算精度
      def _accuracy(Y_pred, Y_label):
          # This function calculates prediction accuracy
          return 1 - np.mean(np.abs(Y_pred - Y_label))
      
      
      ## 读取数据
      with open(X_train_fpath) as f:
          next(f) # 不需要第一行的表头
          X_train = np.array([line.strip('
      ').split(',')[1:] for line in f], dtype=float) # 不要第一列的ID
          # print(X_train)
      with open(Y_train_fpath) as f:
          next(f) # 不需要第一行的表头
          Y_train = np.array([line.strip('
      ').split(',')[1] for line in f], dtype=float)# 不要第一列的ID,只取第二列
          # print(Y_train)
      with open(X_test_fpath) as f:
          next(f) # 不需要第一行的表头
          X_test = np.array([line.strip('
      ').split(',')[1:] for line in f], dtype=float)
          # print(X_test)
      
      
      ## 数据集处理
      # 训练集和测试集normalization
      X_train, X_mean, X_std = _normalize(X_train, train=True)
      X_test, _, _ = _normalize(X_test, train=False, specified_column=None, X_mean=X_mean, X_std=X_std)
      data_dim = X_train.shape[1]
      
      
      ## 计算每个类别的样本的平均值和协方差
      # 区分类别
      X_train_0 = np.array([x for x, y in zip(X_train, Y_train) if y==0])
      X_train_1 = np.array([x for x, y in zip(X_train, Y_train) if y==1])
      # 计算每个类别的样本的平均值
      mean_0 = np.mean(X_train_0, axis=0) # 计算每个维度特征的平均值
      mean_1 = np.mean(X_train_1, axis=0)
      # 计算每个类别的样本的协方差矩阵(可以研究下协方差矩阵是如何计算的以及为什么)
      cov_0 = np.zeros((data_dim, data_dim))
      cov_1 = np.zeros((data_dim, data_dim))
      for x in X_train_0:
          cov_0 += np.dot(np.transpose([x - mean_0]), [x - mean_0]) / X_train_0.shape[0] # transpose没有参数的话,就是转置,计算协方差矩阵时需要转置
      for x in X_train_1:
          cov_1 += np.dot(np.transpose([x - mean_1]), [x - mean_1]) / X_train_1.shape[0]
      # 计算共享协方差矩阵(Shared covariance is taken as a weighted average of individual in-class covariance)
      cov = (cov_0 * X_train_0.shape[0] + cov_1 * X_train_1.shape[0]) / (X_train_0.shape[0] + X_train_1.shape[0])
      
      
      ## 计算权重和偏置
      # 计算协方差矩阵的逆矩阵
      # Since covariance matrix may be nearly singular, np.linalg.inv() may give a large numerical error.
      # Via SVD decomposition, one can get matrix inverse efficiently and accurately.
      u, s, v = np.linalg.svd(cov, full_matrices=False)
      inv = np.matmul(v.T * 1 / s, u.T)
      # 计算weight和bias
      w = np.dot(inv, mean_0 - mean_1)
      b = (-0.5) * np.dot(mean_0, np.dot(inv, mean_0)) + 0.5 * np.dot(mean_1, np.dot(inv, mean_1)) + np.log(float(X_train_0.shape[0])) / X_train_1.shape[0]
      
      
      ## 计算在训练集上的准确率
      Y_train_pred = 1 - _predict(X_train, w, b)
      print('Training accuracy: {}'.format(_accuracy(Y_train_pred, Y_train)))
      
      
      ## 预测测试集结果
      predictions = 1 - _predict(X_test, w, b)
      with open(output_fpath, 'w') as f:
          f.write('id,label
      ')
          for i, label in enumerate(predictions):
              f.write('{},{}
      '.format(i, label))
      
      
      ## 寻找最重要的10个维度的特征
      index = np.argsort(np.abs(w))[::-1] # 将w按绝对值从大到小排序
      with open(X_test_fpath) as f:
          features = np.array(f.readline().strip('
      ').split(','))
          for i in index[:10]:
              print(features[i], w[i])
      
      

    Github(github.com):@chouxianyu

    Github Pages(github.io):@臭咸鱼

    知乎(zhihu.com):@臭咸鱼

    博客园(cnblogs.com):@臭咸鱼

    B站(bilibili.com):@绝版臭咸鱼

    微信公众号:@臭咸鱼

    转载请注明出处,欢迎讨论和交流!


  • 相关阅读:
    手机号码正则,座机正则,400正则
    Win10 开始运行不保存历史记录原因和解决方法
    Ubuntu 普通用户无法启动Google chrome
    在win10 64位系统安装 lxml (Python 3.5)
    SecureCRT窗口输出代码关键字高亮设置
    【转】win2008 中iis7设置404页面但返回状态200的问题解决办法
    ionic app开发遇到的问题
    Ubuntu 创建文件夹快捷方式
    Ubuntu配置PATH环境变量
    Ubuntu 升级python到3.7
  • 原文地址:https://www.cnblogs.com/chouxianyu/p/14588011.html
Copyright © 2011-2022 走看看