zoukankan      html  css  js  c++  java
  • 简单二叉树相关代码

      1 #include <stdio.h>
      2 
      3 typedef struct tagBinaryTree* Node;
      4 typedef struct tagBinaryTree BinaryTree;
      5 
      6 struct tagBinaryTree{
      7     int key;
      8     Node lchild;
      9     Node rchild;
     10     Node parent;
     11 };
     12 typedef struct                          //定义栈的结构体 
     13 { 
     14     Node          *base;              //在栈构造前和销毁后,base的值为NULL 
     15     Node          *top;               //栈顶指针 
     16     int             stacksize;          //当前已分配的存储空间,以元素为单位 
     17 }Stack; 
     18 int Key(Node branch)
     19 {
     20     if(branch == NULL) return 0;
     21     return branch->key;
     22 }
     23 
     24 Node Left(Node branch)
     25 {
     26     if(branch == NULL) return NULL;
     27     return branch->lchild;
     28 }
     29 
     30 Node Right(Node branch)
     31 {
     32     if(branch == NULL) return NULL;
     33     return branch->rchild;
     34 }
     35 
     36 Node Parent(Node branch)
     37 {
     38     if(branch == NULL) return NULL;
     39     return branch->parent;
     40 }
     41 Node LookUp(Node T, int key)
     42 {
     43     while(T != NULL && Key(T) != key){
     44         if(key < Key(T)){
     45             T = Left(T);
     46         }else{
     47             T = Right(T);
     48         }
     49     }
     50     return T;
     51 }
     52 Node CreateLeaf(int x, Node* T)
     53 {
     54     Node n = malloc(sizeof(BinaryTree));
     55     n->lchild = n->rchild = n->parent = NULL;
     56     
     57     n->key = x;
     58     *T = n;
     59     return n;
     60 }
     61 
     62 int InsertKey(int key, Node* T)
     63 {
     64     Node root = *T,parent = NULL,x = NULL;
     65     x = LookUp(*T, key);
     66     if(x != NULL) return 0;
     67     CreateLeaf(key, &x);
     68     
     69     while(root != NULL){
     70         parent = root;
     71         if(key < Key(root)){
     72             root = Left(root);
     73         }else if(key > Key(root)){
     74             root = Right(root);
     75         }else{
     76             return 0;
     77         }
     78     }
     79     x->parent = parent;
     80 
     81     if(parent == NULL) {
     82         *T = x;
     83         return 0;
     84     }else if(key < Key(parent)){
     85         parent->lchild = x;
     86     }else{
     87         parent->rchild= x;
     88     }
     89     return 0;
     90 }
     91 
     92 int PreOrderTravel(Node T, Stack S)
     93 {
     94     while( S.base != S.top|| T != NULL)       //判断栈和树是否为空 
     95     { 
     96         while( T !=NULL )                  //向左子树一直循环到最左的节点 
     97         { 
     98             printf("%d ",T->key);      //输出元素
     99             *S.top++ = T; 
    100             T = T->lchild; 
    101         } 
    102         T = *--S.top;                     //实现出栈 
    103         T = T->rchild;                    //转向右子树 
    104     } 
    105     printf("
    ");
    106     return 0; 
    107 }
    108 int InOder(Node T,Stack S)      //实现非递归中序遍历函数 
    109 { 
    110     while( S.base != S.top || T != NULL)       //判断栈和树是否为空 
    111     { 
    112         while(T!=NULL)                  //向左子树一直循环到最左的节点 
    113         { 
    114             *S.top++ = T; 
    115             T = T->lchild; 
    116         } 
    117         T = *--S.top;                     //实现出栈 
    118         printf("%d ", T->key);
    119         T = T->rchild;                  //转向右子树 
    120     } 
    121     printf("
    ");
    122     return 0; 
    123 } 
    124         
    125 int PostOrder(Node T,Stack S)   //实现非递归后序遍历函数 
    126 { 
    127     Node temp=NULL;                   //定义临时变量,用来标记刚刚访问过的节点 
    128     while( S.base != S.top || T!= NULL )      //判断栈和树是否为空 
    129     { 
    130         while(T!=NULL)                  //向左子树一直循环到最左的节点 
    131         { 
    132             *S.top++ = T; 
    133             T = T->lchild; 
    134         } 
    135         T = *(S.top-1);                   //取栈顶节点 
    136         if( T->rchild == NULL || T->rchild == temp) 
    137         {                               //如果该节点没有右孩子或者其右孩子刚刚被访问过 
    138             printf("%d ",T->key);      //输出元素
    139             S.top--;                    //已访问,使其出栈 
    140             temp=T;                     //标记为刚刚访问过 
    141             T=NULL;                     //若遍历完以该节点为根的子树,且栈空,则结束,否则继续 
    142         } else{
    143             T = T->rchild;                    //转向右子树 
    144         }
    145     } 
    146     printf("
    ");
    147     return 0; 
    148 } 
    149 int CreatStack(Stack* S)             //实现栈的建立函数 
    150 { 
    151     S->base=(Node*)malloc(100*sizeof(Node)); 
    152     if(!S->base)                         //判断是否建立失败 
    153         return -1; 
    154     S->top=S->base; 
    155     S->stacksize=100; 
    156     return 0; 
    157 }
    158 void DestoryStack(Stack* s)
    159 {
    160     if(!s || !s->base){
    161         return ;
    162     }
    163     free(s->base);
    164     memset(s, 0, sizeof(Stack));
    165 }
    166 Node FollowNode(Node T, int key)
    167 {
    168     Node cur = LookUp(T, key);
    169     
    170     if(cur->rchild){
    171         Node right = cur->rchild;
    172         while(right->lchild != NULL){
    173             right = right->lchild;
    174         }
    175         return right;
    176     }else if(Parent(cur)){
    177         Node parent= Parent(cur);
    178         while(parent != NULL && Right(parent) == cur ){
    179             cur=parent;
    180             parent = Parent(parent);
    181         }
    182         return parent;
    183     }
    184     return NULL;
    185 }
    186 
    187 Node PreNode(Node T, int key)
    188 {
    189     Node cur = LookUp(T, key);
    190     if(cur->lchild){
    191         Node left = cur->lchild;
    192         while(left->rchild != NULL){
    193             left = left->rchild;
    194         }
    195         return left;
    196     }else if(Parent(cur)){
    197         Node parent = Parent(cur);
    198         while(parent != NULL && Left(parent) == cur){
    199             cur = parent;
    200             parent = Parent(parent);
    201         }
    202         return parent;
    203     }
    204     return NULL;
    205 }
    206 Node DeleteNode(Node* T, int key)
    207 {
    208     Node cur = LookUp(*T, key);
    209     Node root = *T,old_cur = cur,  parent = NULL;
    210     
    211     if(root == NULL || cur == NULL){
    212         return *T;
    213     }
    214     parent = cur->parent;
    215     if(cur->lchild == NULL){
    216         cur = cur->rchild;
    217     }else if(cur->rchild == NULL){
    218         cur = cur->lchild;
    219     }else{
    220         Node right = cur->rchild;
    221         while(right->lchild != NULL){
    222             right = right->lchild;
    223         }
    224         cur->key = right->key;
    225         if(right->parent != cur){
    226             right->parent->lchild = right->rchild;
    227             if(right->rchild != NULL){
    228                 right->rchild->parent = right->parent;
    229             }
    230         }else{
    231             cur->rchild = right->rchild;
    232             if(right->rchild != NULL){
    233                 right->rchild->parent = right->parent;
    234             }
    235         }
    236         free(right);
    237         right = NULL;
    238         return root;
    239     }
    240     if(cur != NULL){
    241         cur->parent = parent;
    242     }else{
    243         //printf("cur is NULL
    ");
    244     }
    245     if(root == old_cur && root->lchild == NULL && root->rchild == NULL){
    246         *T = NULL;
    247         //do nothing
    248     }else if(parent == NULL){
    249         *T =root = cur;
    250     }else{
    251         if(parent->lchild == old_cur){
    252             parent->lchild = cur;
    253         }else{
    254             parent->rchild = cur;
    255         }
    256     }
    257     free(old_cur);
    258     old_cur = NULL;
    259     return root;
    260 }
    261 
    262 int main(int argc, char** argv)
    263 {
    264     Node root = NULL, pNode = NULL;
    265     Stack stack = {0};
    266     int len = 0, i = 0;
    267     unsigned int tdata[21] = {30, 11, 71, 15, 9, 31, 12, 24, 18,10, 3,13, 14,33,80, 47,8,5,6,26};
    268     CreatStack(&stack);
    269 
    270     while(i < 20){
    271         InsertKey(tdata[i], &root);
    272         i++;
    273     }
    274     
    275     PreOrderTravel(root, stack);
    276     InOder(root,stack);
    277     PostOrder(root,stack);
    278     
    279     pNode = FollowNode(root, 30);
    280     printf("30 follow node:%d
    ", pNode->key);
    281     pNode = PreNode(root, 47);
    282     printf("47 pre node :%d
    ", pNode->key);
    283     DeleteNode(&root, 31);
    284 
    285     PreOrderTravel(root, stack);
    286     InOder(root,stack);
    287     PostOrder(root,stack);
    288     pNode = FollowNode(root, 30);
    289     printf("30 follow node:%d
    ", pNode->key);
    290     pNode = PreNode(root, 47);
    291     printf("47 pre node :%d
    ", pNode->key);
    292     
    293     i = 0;
    294     while(i < 20){
    295         DeleteNode(&root, tdata[i]);
    296         i++;
    297     }
    298     DestoryStack(&stack);
    299     return 0;
    300 }
  • 相关阅读:
    c# 抽象类(abstract)
    c# 虚方法(virtual)与 多态(Polymorphism)
    02.JavaScript基础上
    第 12 章 Ajax
    第 11 章 动画效果
    第 10 章 高级事件
    第 9 章 事件对象
    第 8 章 基础事件
    第 7 章 表单选择器
    第6章 DOM节点操作
  • 原文地址:https://www.cnblogs.com/chriszsy/p/9048731.html
Copyright © 2011-2022 走看看