zoukankan      html  css  js  c++  java
  • 判断2个正整数是否互质

    1.   Two positive integers i and j are considered to be co-prime if there exists no integer greater than 1 that divides them both. 

    Write a function co-prime that has two input parameters, i and j, and returns a value of 1 for true if i and j are co-prime. 

    Otherwise, co-prime should return a value of 0 for false.  Also, write a driver program to test the your function. 

    You should specify the input / output format of your program.

     

    使用欧几里得算法(辗转相除法)

    GCD is stand for greatest common divisor最大公约数

    Hint - You can use the Euclidean Algorithm which is outlined as below:

    To find the greatest common divisor between two natural numbers, divide one by the other and take the remainder (i.e. modulus operation). 

    为了找到2个自然数a,b的最大公约数,用一个数a除以另外一个数b,取余数

    If the remainder is non-zero, take the divider and the modulus as the input and repeat the modulus operation until the modulus becomes zero. 

    如果余数不是0,把除数和余数作为输入,重复求余的操作。直到余数变为0

    The last divider used before the modulus becomes zero is the greatest common divisor (GCD) between the two numbers that we start out with. 

    在余数变为0前的最后一个除数,是2个数字的最大公约数

    If the GCD is 1, then the two numbers are co-prime (i.e. relatively prime).  (30 points)

    如果最大公约数是1,那么这2个数字互质

    Example 1: Find the GCD of 84 and 140.

    140 % 84 = 56 ,  84 % 56 = 28,  56 % 28 = 0

    the GCD of 84 and 140 is 28 Þ not co-prime.

    Example 2: Find the GCD of 12 and 35

    12 % 35 = 12,  35 % 12 = 11,  12 % 11 = 1,  11 % 1 = 0

    the GCD of 35 and 12 is 1 Þ co-prime.

            public static bool CoPrime(int a,int b)
            {
                bool flag = false;
                int c;
                while (true)
                {
                    c = a % b;
                    if (c == 0)
                    {
                        if (b == 1)
                        {
                            flag = true;
                        }
                        break;
                    }
                    a = b;
                    b = c;
                }
                return flag;
            }
  • 相关阅读:
    随机生成一份试卷,试卷的种类分为单选、多选、判断三种题型。nodejs6.0 mysql
    git 常用命令
    ECMAScript 继承机制实现
    javascript正则表达式
    利用javascript实现二维数组的筛选
    iframe引入百度地图显示企业位置
    前端开发APP,从HBuilder开始~
    js闭包理解
    Python多线程threading与多线程中join()的用法
    Python中的装饰器
  • 原文地址:https://www.cnblogs.com/chucklu/p/4626855.html
Copyright © 2011-2022 走看看