zoukankan      html  css  js  c++  java
  • Flink+Kafka 接收流数据并打印到控制台

    试验环境

    Windows:IDEA

    Linux:Kafka,Zookeeper

    POM和Demo

    <?xml version="1.0" encoding="UTF-8"?>
    <project xmlns="http://maven.apache.org/POM/4.0.0"
             xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
             xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
        <modelVersion>4.0.0</modelVersion>
    
        <groupId>com.yk</groupId>
        <artifactId>flink</artifactId>
        <version>1.0-SNAPSHOT</version>
    
        <properties>
            <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
            <flink.version>1.6.1</flink.version>
            <slf4j.version>1.7.7</slf4j.version>
            <log4j.version>1.2.17</log4j.version>
        </properties>
    
        <dependencies>
            <!--******************* flink *******************-->
            <dependency>
                <groupId>org.apache.flink</groupId>
                <artifactId>flink-java</artifactId>
                <version>${flink.version}</version>
            </dependency>
            <dependency>
                <groupId>org.apache.flink</groupId>
                <artifactId>flink-streaming-java_2.11</artifactId>
                <version>${flink.version}</version>
            </dependency>
            <dependency>
                <groupId>org.apache.flink</groupId>
                <artifactId>flink-clients_2.11</artifactId>
                <version>${flink.version}</version>
            </dependency>
            <dependency>
                <groupId>org.apache.flink</groupId>
                <artifactId>flink-connector-kafka-0.11_2.11</artifactId>
                <version>${flink.version}</version>
                <scope> compile</scope>
            </dependency>
            <dependency>
                <groupId>org.apache.flink</groupId>
                <artifactId>flink-connector-filesystem_2.11</artifactId>
                <version>${flink.version}</version>
            </dependency>
            <dependency>
                <groupId>org.apache.flink</groupId>
                <artifactId>flink-core</artifactId>
                <version>${flink.version}</version>
            </dependency>
            <dependency>
                <groupId>org.apache.hadoop</groupId>
                <artifactId>hadoop-hdfs</artifactId>
                <version>3.1.1</version>
            </dependency>
    
            <!--alibaba fastjson-->
            <dependency>
                <groupId>com.alibaba</groupId>
                <artifactId>fastjson</artifactId>
                <version>1.2.51</version>
            </dependency>
            <!--******************* 日志 *******************-->
            <dependency>
                <groupId>org.slf4j</groupId>
                <artifactId>slf4j-log4j12</artifactId>
                <version>${slf4j.version}</version>
                <scope>runtime</scope>
            </dependency>
            <dependency>
                <groupId>log4j</groupId>
                <artifactId>log4j</artifactId>
                <version>${log4j.version}</version>
                <scope>runtime</scope>
            </dependency>
            <!--******************* kafka *******************-->
            <dependency>
                <groupId>org.apache.kafka</groupId>
                <artifactId>kafka-clients</artifactId>
                <version>1.1.1</version>
            </dependency>
    
        </dependencies>
    
        <build>
            <plugins>
                <plugin>
                    <groupId>org.apache.maven.plugins</groupId>
                    <artifactId>maven-compiler-plugin</artifactId>
                    <version>3.3</version>
                    <configuration>
                        <source>1.8</source>
                        <target>1.8</target>
                    </configuration>
                </plugin>
                <!--打jar包-->
                <plugin>
                    <artifactId>maven-assembly-plugin</artifactId>
                    <configuration>
                        <archive>
                            <manifest>
                                <mainClass>com.allen.capturewebdata.Main</mainClass>
                            </manifest>
                        </archive>
                        <descriptorRefs>
                            <descriptorRef>jar-with-dependencies</descriptorRef>
                        </descriptorRefs>
                    </configuration>
                </plugin>
            </plugins>
        </build>
    </project>
    package flink.kafkaFlink;
    
    import java.util.Properties;
    
    import org.apache.flink.streaming.api.TimeCharacteristic;
    import org.apache.flink.streaming.api.datastream.DataStream;
    import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
    import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer010;
    
    public class KafkaDemo {
    
        public static void main(String[] args) throws Exception {
    
            // set up the streaming execution environment
            final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
            //默认情况下,检查点被禁用。要启用检查点,请在StreamExecutionEnvironment上调用enableCheckpointing(n)方法,
            // 其中n是以毫秒为单位的检查点间隔。每隔5000 ms进行启动一个检查点,则下一个检查点将在上一个检查点完成后5秒钟内启动
    
            env.enableCheckpointing(500);
            env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime);
            Properties properties = new Properties();
            properties.setProperty("bootstrap.servers", "hadoop01:9092");//kafka的节点的IP或者hostName,多个使用逗号分隔
            properties.setProperty("zookeeper.connect", "hadoop01:2181");//zookeeper的节点的IP或者hostName,多个使用逗号进行分隔
            properties.setProperty("group.id", "test-consumer-group");//flink consumer flink的消费者的group.id
            System.out.println("11111111111");
            FlinkKafkaConsumer010<String> myConsumer = new FlinkKafkaConsumer010<String>("test", new org.apache.flink.api.common.serialization.SimpleStringSchema(), properties);
            // FlinkKafkaConsumer010<String> myConsumer = new FlinkKafkaConsumer010<String>("test",new SimpleStringSchema(),properties);//test0是kafka中开启的topic
            myConsumer.assignTimestampsAndWatermarks(new CustomWatermarkEmitter());
            DataStream<String> keyedStream = env.addSource(myConsumer);//将kafka生产者发来的数据进行处理,本例子我进任何处理
            System.out.println("2222222222222");
            keyedStream.print();//直接将从生产者接收到的数据在控制台上进行打印
            // execute program
            System.out.println("3333333333333");
            env.execute("Flink Streaming Java API Skeleton");
    
        }
    }
    package flink.kafkaFlink;
    
    import org.apache.flink.streaming.api.functions.AssignerWithPunctuatedWatermarks;
    import org.apache.flink.streaming.api.watermark.Watermark;
    
    public class CustomWatermarkEmitter implements AssignerWithPunctuatedWatermarks<String> {
    
        private static final long serialVersionUID = 1L;
    
        public long extractTimestamp(String arg0, long arg1) {
            if (null != arg0 && arg0.contains(",")) {
                String parts[] = arg0.split(",");
                return Long.parseLong(parts[0]);
            }
            return 0;
        }
    
        public Watermark checkAndGetNextWatermark(String arg0, long arg1) {
            if (null != arg0 && arg0.contains(",")) {
                String parts[] = arg0.split(",");
                return new Watermark(Long.parseLong(parts[0]));
            }
            return null;
        }
    }

    在云主机上启动服务

    1.启动zookeeper;

    2.启动Kafka;

    3.创建topic;

    4.启动生产者。

    bin/zkServer.sh start
    bin/kafka-server-start.sh config/server.properties
    bin/kafka-topics.sh --create --zookeeper hadoop01:2181 --replication-factor 1 --partitions 1 --topic test
    bin/kafka-console-producer.sh --broker-list hadoop01:9092 --topic test

    运行程序KafkaDemo

    1.在kafka的生产者界面输入内容

    2.查看IDEA的控制台

     

    参考:https://www.cnblogs.com/ALittleMoreLove/archive/2018/08/15/9481545.html

  • 相关阅读:
    一:Storm集群环境搭建
    八:Zookeeper开源客户端Curator的api测试
    七:zooKeeper开源客户端ZkClient的api测试
    六:ZooKeeper的java客户端api的使用
    Redis(四):常用数据类型和命令
    Spring Cloud分布式微服务系统中利用redssion实现分布式锁
    @Controller和@RestController的区别?
    可伸缩系统架构探讨
    可扩展架构系统的探讨
    @ExceptionHandler异常统一处理
  • 原文地址:https://www.cnblogs.com/chuijingjing/p/10535081.html
Copyright © 2011-2022 走看看