即BCD代码。Binary-Coded Decimal?,简称BCD,称BCD码或二-十进制代码,亦称二进码十进数。是一种二进制的数字编码形式,用二进制编码的十进制代码。这种编码形式利用了四个位元来储存一个十进制的数码,使二进制和十进制之间的转换得以快捷的进行。这种编码技巧,最常用于会计系统的设计里,因为会计制度经常需要对很长的数字串作准确的计算。相对于一般的浮点式记数法,采用BCD码,既可保存数值的精确度,又可免却使电脑作浮点运算时所耗费的时间。此外,对于其他需要高精确度的计算,BCD编码亦很常用。
由于十进制数共有0、1、2、……、9十个数码,因此,至少需要4位二进制码来表示1位十进制数。4位二进制码共有2^4=16种码组,在这16种代码中,可以任选10种来表示10个十进制数码,共有N=16!/(16-10)!约等于2.9乘以10的10次方种方案。常用的BCD代码列于末。
常用BCD编码方式
最常用的BCD编码,就是使用"0"至"9"这十个数值的二进码来表示。这种编码方式,在中国大陆称之为“8421码”。除此以外,对应不同需求,各人亦开发了不同的编码方法,以适应不同的需求。这些编码,大致可以分成有权码和无权码两种:
有权BCD码,如:8421(最常用)、2421、5421…
无权BCD码,如:余3码、格雷码…
以下为三种常见的BCD编码的比较。
十进数 8421-BCD码 余3-BCD码 2421-A码
(M10) D C B A C3 C2 C1 C0 a3 a2 a1 a0
0 0 0 0 0 0 0 1 1 0 0 0 0
1 0 0 0 1 0 1 0 0 0 0 0 1
2 0 0 1 0 0 1 0 1 0 0 1 0
3 0 0 1 1 0 1 1 0 0 0 1 1
4 0 1 0 0 0 1 1 1 0 1 0 0
5 0 1 0 1 1 0 0 0 0 1 0 1
6 0 1 1 0 1 0 0 1 0 1 1 0
7 0 1 1 1 1 0 1 0 0 1 1 1
8 1 0 0 0 1 0 1 1 1 1 1 0
9 1 0 0 1 1 1 0 0 1 1 1 1
常用BCD码
十进制数 8421码 5421码 2421码 余3码 余3循环码
0 0000 0000 0000 0011 0010
1 0001 0001 0001 0100 0110
2 0010 0010 0010 0101 0111
3 0011 0011 0011 0110 0101
4 0100 0100 0100 0111 0100
5 0101 1000 1011 1000 1100
6 0110 1001 1100 1001 1101
7 0111 1010 1101 1010 1111
8 1000 1011 1110 1011 1110
9 1001 1100 1111 1100 1010
-----------------------
什么是BCD码2006-3-19 13:24:45
bcd码也叫8421码就是将十进制的数以8421的形式展开成二进制,大家知道十进制是0~9十个数组成,着十个数每个数都有自己的8421码:
0=0000
1=0001
2=0010
3=0011
4=0100
5=0101
6=0110
7=0111
8=1000
9=1001
举个例子:
321的8421码就是
3 2 1
0011 0010 0001
具体:
bcd码是十位二进制码, 也就是将十进制的数字转化为二进制, 但是和普通的转化有一点不同, 每一个十进制的数字0-9都对应着一个四位的二进制码,对应关系如下: 十进制0 对应 二进制0000 ;十进制1 对应二进制0001 ....... 9 1001 接下来的10就有两个上述的码来表示 10 表示为00010000 也就是BCD码是遇见1001就产生进位,不象普通的二进制码,到1111才产生进位10000
举例:
某二进制无符号数11101010,转换为三位非压缩BCD数,按百位、十位和个位的顺序表示,应为<U>__C</U>__。
A.00000001 00000011 00000111 B. 00000011 00000001 00000111
C.00000010 00000011 00000100 D. 00000011 00000001 00001001
解:(1)11101010转换为十进制:234
(2)按百位、十位和个位的顺序表示,应为<U>__C</U>__。
附注:压缩BCD码与非压缩BCD码的区别—— 压缩BCD码的每一位用4位二进制表示,一个字节表示两位十进制数。例如10010110B表示十进制数96D;非压缩BCD码用1个字节表示一位十进制数,高四位总是0000,低4位的0000~1001表示0~9.例如00001000B表示十进制数8.
public string bcd2dec(string src)
{
StringBuilder dest = new StringBuilder();
for(int i=0;i<src.Length/4;i++)
{
switch(src.Substring(i * 4, 4))
{
case "0000":
dest.Append("0");
break;
case "0001":
dest.Append("1");
break;
case "0010":
dest.Append("2");
break;
case "0011":
dest.Append("3");
break;
case "0100":
dest.Append("4");
break;
case "0101":
dest.Append("5");
break;
case "0110":
dest.Append("6");
break;
case "0111":
dest.Append("7");
break;
case "1000":
dest.Append("8");
break;
case "1001":
dest.Append("9");
break;
}
return dest.ToString();
}
}