zoukankan      html  css  js  c++  java
  • 用python实现逻辑回归


    机器学习课程的一个实验,整理出来共享。
    原理很简单,优化方法是用的梯度下降。后面有测试结果。

    # coding=utf-8
    from math import exp
    
    import matplotlib.pyplot as plt
    import numpy as np
    from sklearn.datasets.samples_generator import make_blobs
    
    
    def sigmoid(num):
        '''
    
        :param num: 待计算的x
        :return: sigmoid之后的数值
        '''
        if type(num) == int or type(num) == float:
            return 1.0 / (1 + exp(-1 * num))
        else:
            raise ValueError, 'only int or float data can compute sigmoid'
    
    
    class logistic():
        def __init__(self, x, y): 
            if type(x) == type(y) == list:
                self.x = np.array(x)
                self.y = np.array(y)
            elif type(x) == type(y) == np.ndarray:
                self.x = x
                self.y = y
            else:
                raise ValueError, 'input data error'
    
        def sigmoid(self, x):
            '''
    
            :param x: 输入向量
            :return: 对输入向量整体进行simgoid计算后的向量结果
            '''
            s = np.frompyfunc(lambda x: sigmoid(x), 1, 1)
            return s(x)
    
        def train_with_punish(self, alpha, errors, punish=0.0001):
            '''
    
            :param alpha: alpha为学习速率
            :param errors: 误差小于多少时停止迭代的阈值
            :param punish: 惩罚系数
            :param times: 最大迭代次数
            :return:
            '''
            self.punish = punish
            dimension = self.x.shape[1]
            self.theta = np.random.random(dimension)
            compute_error = 100000000
            times = 0
            while compute_error > errors:
                res = np.dot(self.x, self.theta)
                delta = self.sigmoid(res) - self.y
                self.theta = self.theta - alpha * np.dot(self.x.T, delta) - punish * self.theta  # 带惩罚的梯度下降方法
                compute_error = np.sum(delta)
                times += 1
    
        def predict(self, x):
            '''
    
            :param x: 给入新的未标注的向量
            :return: 按照计算出的参数返回判定的类别
            '''
            x = np.array(x)
            if self.sigmoid(np.dot(x, self.theta)) > 0.5:
                return 1
            else:
                return 0
    
    
    def test1():
        '''
        用来进行测试和画图,展现效果
        :return:
        '''
        x, y = make_blobs(n_samples=200, centers=2, n_features=2, random_state=0, center_box=(10, 20))
        x1 = []
        y1 = []
        x2 = []
        y2 = []
        for i in range(len(y)):
            if y[i] == 0:
                x1.append(x[i][0])
                y1.append(x[i][1])
            elif y[i] == 1:
                x2.append(x[i][0])
                y2.append(x[i][1])
        # 以上均为处理数据,生成出两类数据
        p = logistic(x, y)
        p.train_with_punish(alpha=0.00001, errors=0.005, punish=0.01)  # 步长是0.00001,最大允许误差是0.005,惩罚系数是0.01
        x_test = np.arange(10, 20, 0.01)
        y_test = (-1 * p.theta[0] / p.theta[1]) * x_test
        plt.plot(x_test, y_test, c='g', label='logistic_line')
        plt.scatter(x1, y1, c='r', label='positive')
        plt.scatter(x2, y2, c='b', label='negative')
        plt.legend(loc=2)
        plt.title('punish value = ' + p.punish.__str__())
        plt.show()
    
    
    if __name__ == '__main__':
        test1()
    
    
    

    运行结果如下图
    image1

    博客首页

  • 相关阅读:
    I帧/P帧/B帧---术语解释
    利用forwardInvocation实现消息重定向
    doubango地址配置
    ARC使用小结
    NSException异常处理
    Runtime of Objective-C
    perl脚本框架整理
    模块——Getopt::Long接收客户命令行参数和Smart::Comments输出获得的命令行参数内容
    Linux学习进阶示意图
    Linux——入门命令
  • 原文地址:https://www.cnblogs.com/chuxiuhong/p/6022566.html
Copyright © 2011-2022 走看看