zoukankan      html  css  js  c++  java
  • COJN 0585 800604鸡蛋的硬度

    800604鸡蛋的硬度
    难度级别:B; 运行时间限制:1000ms; 运行空间限制:51200KB; 代码长度限制:2000000B
    试题描述
    最近XX公司举办了一个奇怪的比赛:鸡蛋硬度之王争霸赛。参赛者是来自世 界各地的母鸡,比赛的内容是看谁下的蛋最硬,更奇怪的是XX公司并不使用什么精密仪器来测量蛋的硬度,他们采用了一种最老土的办法--从高度扔鸡蛋--来 测试鸡蛋的硬度,如果一次母鸡下的蛋从高楼的第a层摔下来没摔破,但是从a+1层摔下来时摔破了,那么就说这只母鸡的鸡蛋的硬度是a。你当然可以找出各种 理由说明这种方法不科学,比如同一只母鸡下的蛋硬度可能不一样等等,但是这不影响XX公司的争霸赛,因为他们只是为了吸引大家的眼球,一个个鸡蛋从100 层的高楼上掉下来的时候,这情景还是能吸引很多人驻足观看的,当然,XX公司也绝不会忘记在高楼上挂一条幅,写上“XX公司”的字样--这比赛不过是XX 公司的一个另类广告而已。 
    勤于思考的小A总是能从一件事情中发现一个数学问题,这件事也不例外。“假如有很多同样硬度的鸡蛋,那么我可以用二分的办法用最少的次数测出鸡蛋 的硬度”,小A对自己的这个结论感到很满意,不过很快麻烦来了,“但是,假如我的鸡蛋不够用呢,比如我只有1个鸡蛋,那么我就不得不从第1层楼开始一层一 层的扔,最坏情况下我要扔100次。如果有2个鸡蛋,那么就从2层楼开始的地方扔……等等,不对,好像应该从1/3的地方开始扔才对,嗯,好像也不一定 啊……3个鸡蛋怎么办,4个,5个,更多呢……”,和往常一样,小A又陷入了一个思维僵局,与其说他是勤于思考,不如说他是喜欢自找麻烦。 
    好吧,既然麻烦来了,就得有人去解决,小A的麻烦就靠你来解决了:)
    输入
    输入包括多组数据,每组数据一行,包含两个正整数n和m(1<=n<=100,1<=m<=10),其中n表示楼的高度,m表示你现在拥有的鸡蛋个数,这些鸡蛋硬度相同(即它们从同样高的地方掉下来要么都摔碎要么都不碎),并且小于等于n。你可以假定硬度为x的鸡蛋从高度小于等于x的地方摔无论如何都不会碎(没摔碎的鸡蛋可以继续使用),而只要从比x高的地方扔必然会碎。
    对每组输入数据,你可以假定鸡蛋的硬度在0至n之间,即在n+1层扔鸡蛋一定会碎。
    输出
    对于每一组输入,输出一个整数,表示使用最优策略在最坏情况下所需要的扔鸡蛋次数。
    输入示例
    100 1
    100 2
    输出示例
    100
    14
    其他说明
    说明:最优策略指在最坏情况下所需要的扔鸡蛋次数最少的策略。
    如果只有一个鸡蛋,你只能从第一层开始扔,在最坏的情况下,鸡蛋的硬度是100,所以需要扔100次。如果采用其他策略,你可能无法测出鸡蛋的硬度(比如你第一次在第二层的地方扔,结果碎了,这时你不能确定硬度是0还是1),即在最坏情况下你需要扔无限次,所以第一组数据的答案是100。
     

    题解:2004论文题。。。窝萌设g[i][j]表示用j个蛋试i次能确定的高度。经证明,时间复杂度O(sqrt(n)),空间复杂度O(logn)。

    还有一个稀烂一点的做法,设f[i][j]表示用i个蛋在j层楼上能确定的高度。直接dp是O(n^3)的,加上下界分析的优化是O(n^2logn)的,注意到决策的单调性:f[i][j]>=f[i][j-1],时间复杂度为O(nlog^2n)。。。

     1 #include<iostream>
     2 #include<cstdio>
     3 #include<cmath>
     4 #include<algorithm>
     5 #include<queue>
     6 #include<cstring>
     7 #define PAU putchar(' ')
     8 #define ENT putchar('
    ')
     9 using namespace std;
    10 const int maxn=25;
    11 int n,eggnum,now=1,old,g[maxn];
    12 inline int read(){
    13     int x=0,sig=1;char ch=getchar();
    14     for(;!isdigit(ch);ch=getchar())if(ch=='-')sig=0;
    15     for(;isdigit(ch);ch=getchar())x=10*x+ch-'0';
    16     return sig?x:-x;
    17 }
    18 inline void write(int x){
    19     if(x==0){putchar('0');return;}if(x<0)putchar('-'),x=-x;
    20     int len=0,buf[15];while(x)buf[len++]=x%10,x/=10;
    21     for(int i=len-1;i>=0;i--)putchar(buf[i]+'0');return;
    22 }
    23 void solve(){
    24     for(int i=2;i<=n;i++){
    25         for(int j=eggnum;j>=2;j--){
    26             g[j]=g[j-1]+g[j]+1;
    27             if((j==eggnum)&&(g[j]>=n)){write(i);ENT;return;}
    28         }g[1]=i;
    29     }return;
    30 }
    31 void init(){
    32     int t;
    33     while(scanf("%d",&n)==1){
    34         eggnum=read();
    35         if(n<=1){write(1);ENT;continue;}
    36         if(eggnum==1){write(n);ENT;continue;}
    37         t=floor(log2(n))+1.0;
    38         if(eggnum>=t){write(t);ENT;continue;}
    39         for(int i=1;i<=eggnum;i++)g[i]=1;now=1;
    40         solve();
    41     }
    42     return;
    43 }
    44 void work(){
    45     return;
    46 }
    47 void print(){
    48     return;
    49 }
    50 int main(){init();work();print();return 0;}
  • 相关阅读:
    Windows下临界区的使用CRITICAL_SECTION
    MFC中消息映射的实现
    Oracle中提供的事件触发机制
    CreateEvent()详解
    内核参数优化之2-1 tcp/ip 标志位报文解析
    内核参数优化之1 keepalive解析
    python之7-3对象的信息/方法获取
    python之7-2类的继承与多态
    python之7-1类
    python之6-3嵌套函数
  • 原文地址:https://www.cnblogs.com/chxer/p/4672748.html
Copyright © 2011-2022 走看看