问题分析
要求树上最远距离,很显然就想到了树的直径。关于树的直径,有下面几个结论:
- 如果一棵树的直径两个端点为(a,b),那么树上一个点(v)开始的最长路径是(v ightarrow a)或(v ightarrow b)。
- 如果有两棵树,直径分别为(a_1,b_1)和(a_2,b_2),那么在这两棵树间连一条边,新树的直径只可能是(a_1 ightarrow b_1,a_1 ightarrow a_2, a_1 ightarrow b_2, a_2 ightarrow a_1, a_2 ightarrow b_1, a_2 ightarrow b_2)这(6)种可能。
那么这道题就是用并查集维护每棵树的直径的两端,然后用LCT维护树的形态即可。如果需要树的直径性质的证明,可以在下方留言。
参考程序
#include <bits/stdc++.h>
using namespace std;
const int Maxn = 300010;
int Father[ Maxn ], Child[ Maxn ][ 2 ], Stack[ Maxn ], Tag[ Maxn ];
int Size[ Maxn ];
int N, Q, Rec[ Maxn ][ 2 ], Fa[ Maxn ], Type;
void Collect( int Ind ) {
Size[ Ind ] = Size[ Child[ Ind ][ 0 ] ] + Size[ Child[ Ind ][ 1 ] ] + 1;
return;
}
void TagOn( int Ind ) {
Tag[ Ind ] ^= 1;
swap( Child[ Ind ][ 0 ], Child[ Ind ][ 1 ] );
return;
}
void TagDown( int Ind ) {
if( Tag[ Ind ] ) {
TagOn( Child[ Ind ][ 0 ] );
TagOn( Child[ Ind ][ 1 ] );
Tag[ Ind ] ^= 1;
}
return;
}
bool IsRoot( int Ind ) {
if( Ind == 0 ) return true;
return !( ( Child[ Father[ Ind ] ][ 0 ] == Ind ) || ( Child[ Father[ Ind ] ][ 1 ] == Ind ) );
}
void Rotate( int C ) {
int B = Father[ C ];
int A = Father[ B ];
int Tag = Child[ B ][ 1 ] == C;
if( !IsRoot( B ) ) Child[ A ][ Child[ A ][ 1 ] == B ] = C;
Father[ C ] = A;
Child[ B ][ Tag ] = Child[ C ][ Tag ^ 1 ];
Father[ Child[ C ][ Tag ^ 1 ] ] = B;
Child[ C ][ Tag ^ 1 ] = B;
Father[ B ] = C;
Collect( B ); Collect( C );
return;
}
void Splay( int Ind ) {
if( Ind == 0 ) return;
int Num = 0; Stack[ ++Num ] = Ind; int Temp = Ind;
while( !IsRoot( Temp ) ) {
Temp = Father[ Temp ];
Stack[ ++Num ] = Temp;
}
for( int i = Num; i >= 1; --i ) TagDown( Stack[ i ] );
while( !IsRoot( Ind ) ) {
int X = Father[ Ind ];
int Y = Father[ X ];
if( !IsRoot( X ) )
if( ( Child[ Y ][ 0 ] == X ) ^ ( Child[ X ][ 0 ] == Ind ) )
Rotate( Ind );
else
Rotate( X );
Rotate( Ind );
}
Collect( Ind );
return;
}
void Access( int Ind ) {
for( int i = 0; Ind; i = Ind, Ind = Father[ Ind ] ) {
Splay( Ind ); Child[ Ind ][ 1 ] = i; Collect( Ind );
}
return;
}
void MakeRoot( int Ind ) {
Access( Ind );
Splay( Ind );
TagOn( Ind );
return;
}
int FindRoot( int Ind ) {
Access( Ind ); Splay( Ind );TagDown( Ind );
while( Child[ Ind ][ 0 ] ) {
Ind = Child[ Ind ][ 0 ]; TagDown( Ind );
}
Splay( Ind );
return Ind;
}
void Split( int x, int y ) {
MakeRoot( x );
Access( y );
Splay( y );
return;
}
void Link( int x, int y ) {
MakeRoot( x );
if( FindRoot( y ) == x ) return;
Father[ x ] = y;
return;
}
void Cut( int x, int y ) {
MakeRoot( x );
if( FindRoot( y ) != x || Child[ y ][ 0 ] || Father[ y ] != x ) return;
Father[ y ] = Child[ x ][ 1 ] = 0;
Collect( x );
return;
}
int GetFather( int x ) {
if( Fa[ x ] == x ) return x;
Fa[ x ] = GetFather( Fa[ x ] );
return Fa[ x ];
}
int main() {
scanf( "%d", &Type );
scanf( "%d%d", &N, &Q );
for( int i = 1; i <= N; ++i ) {
Fa[ i ] = i;
Size[ i ] = 1;
Rec[ i ][ 0 ] = Rec[ i ][ 1 ] = i;
}
int LastAns = 0;
for( int i = 1; i <= Q; ++i ) {
int Opt; scanf( "%d", &Opt );
if( Opt == 1 ) {
int u, v; scanf( "%d%d", &u, &v );
if( Type ) u ^= LastAns, v ^= LastAns;
int U = GetFather( u ), V = GetFather( v );
if( U == V ) continue;
int Max = 0, x, y;
Split( Rec[ U ][ 0 ], Rec[ U ][ 1 ] );
if( Size[ Rec[ U ][ 1 ] ] > Max ) {
Max = Size[ Rec[ U ][ 1 ] ];
x = Rec[ U ][ 0 ]; y = Rec[ U ][ 1 ];
}
Split( Rec[ V ][ 0 ], Rec[ V ][ 1 ] );
if( Size[ Rec[ V ][ 1 ] ] > Max ) {
Max = Size[ Rec[ V ][ 1 ] ];
x = Rec[ V ][ 0 ]; y = Rec[ V ][ 1 ];
}
Link( u, v ); Fa[ U ] = V;
for( int j = 0; j < 2; ++j )
for( int k = 0; k < 2; ++k ) {
Split( Rec[ U ][ j ], Rec[ V ][ k ] );
if( Size[ Rec[ V ][ k ] ] > Max ) {
Max = Size[ Rec[ V ][ k ] ];
x = Rec[ U ][ j ]; y = Rec[ V ][ k ];
}
}
Rec[ V ][ 0 ] = x; Rec[ V ][ 1 ] = y;
} else {
int u; scanf( "%d", &u );
if( Type ) u ^= LastAns;
int U = GetFather( u );
LastAns = 0;
for( int j = 0; j < 2; ++j ) {
Split( Rec[ U ][ j ], u );
LastAns = max( LastAns, Size[ u ] );
}
--LastAns;
printf( "%d
", LastAns );
fflush( stdout );
}
}
return 0;
}