zoukankan      html  css  js  c++  java
  • 安装hadoop+zookeeper ha

    安装hadoop+zookeeper ha
    前期工作配置好网络和主机名和关闭防火墙
    chkconfig iptables off //关闭防火墙
    
    1.安装好java并配置好相关变量 (/etc/profile)
    #java
    export JAVA_HOME=/usr/java/jdk1.8.0_65
    export JRE_HOME=$JAVA_HOME/jre
    export PATH=$PATH:$JAVA_HOME/bin
    export CLASSPATH=.:$JAVA_HOME/jre/lib/rt.jar:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar (最前面要有.)
    
    保存退出
    source /etc/profile
    
    2.设置好主机名和网络映射关系 (/etc/hosts) 
    // hadoop.master为namenode 
    // hadoop.slaver1/hadoop.slaver2/hadoop.slaver3 为datanode
    
    192.168.22.241 hadoop.master
    192.168.22.242 hadoop.slaver1
    192.168.22.243 hadoop.slaver2
    192.168.22.244 hadoop.slaver3
    
    3.创建用户并创建密码(以root身份登陆)
      1. useradd hadoop(或者其他用户名)
      2. passwd hadoop (回车输入密码 两次)
      3. su hadoop (使用hadoop用户登陆)
      
    4.免密码登陆
        1.安装ssh  具体百度  一般都自带有
        2.创建在家目录底下创建.ssh目录(使用hadoop用户)  mkdir ~/.ssh
        3.创建公钥(namenode端运行)
            ssh-keygen -t rsa
            一路回车
            最后会在~/.ssh目录下生成id_rsa、id_rsa.pub  其中前者是密钥 后者是公钥
        4.将id_rsa.pub文件拷贝到slaver节点的相同用户.ssh目录下
            scp -r id_rsa.pub 用户名@主机名:目标文件(含路径)
        5.在各个子节点执行cat id_rsa.pub >> ~/.ssh/authorized_keys
        6.设置权限
            chmod 600 authorized_keys
            cd ..
            chmod 700 -R .ssh
        7.注意此时还不能免密码  需在master 节点运行ssh slaver 输入密码后才能免密码
    
    5.安装zookeeper(三台 master slaver1 slaver2)
        1.下载安装包
        2.解压安装包
            tar zxvf zookeeper-3.4.7.tar.gz
        3.配置环境变量
            #zookeeper
            export ZOOKEEPER_HOME=/opt/zookeeper-3.4.7
            export PATH=$PATH::$ZOOKEEPER_HOME/bin:$ZOOKEEPER_HOME/conf
            保存退出
            source /etc/profile
        4.修改配置文件
            cp zoo_sample.cfg zoo.cfg
            vim zoo.cfg
            ####zoo.cfg####
            tickTime=2000
            initLimit=10
            syncLimit=5
            dataDir=/opt/zookeeper-3.4.7/tmp/zookeeper (注意创建相关目录)
            clientPort=2181
            server.1=hadoop.master:2888:3888
            server.2=hadoop.slaver1:2888:3888
            server.3=hadoop.slaver2:2888:3888
            
            参数说明:
            tickTime: zookeeper中使用的基本时间单位, 毫秒值.
            dataDir: 数据目录. 可以是任意目录.
            dataLogDir: log目录, 同样可以是任意目录. 如果没有设置该参数, 将使用和dataDir相同的设置.
            clientPort: 监听client连接的端口号.
            initLimit: zookeeper集群中的包含多台server, 其中一台为leader, 集群中其余的server为follower.
            syncLimit: 该参数配置leader和follower之间发送消息, 请求和应答的最大时间长度. 
            server.X=A:B:C 其中X是一个数字, 表示这是第几号server. A是该server所在的IP地址. B配置该server和集群中的leader交换消息所使用的端口. C配置选举leader时所使用的端口. 
        5.分发到各个节点中
           scp -r /opt/zookeeper-3.4.7 hadoop@主机名:/opt
        6.根据dataDir配置的目录下新建myid文件, 写入一个数字, 该数字表示这是第几号server
           cd /opt/zookeeper-3.4.7/tmp/zookeeper
           touch myid(如果是安装上述配置,则master为1 slaver1为2 slaver3)
        7.常用命令
            ####启动/关闭/查看 zk#####
            zkServer.sh start    //集群中每台主机执行一次
            zkServer.sh stop
            zkServer.sh status
            ####查看/删除节点信息####
            zkCli.sh
            ls /
            rmr /节点名称
    
    6.安装hadoop(四台机子 master slaver1 slaver2 slaver3 其中namenode有master和slaver1)
        1.下载安装包
        2.解压安装包
        3.配置环境变量
            #hadoop
            export HADOOP_HOME=/opt/hadoop-2.5.2
            export HADOOP_PREFIX=/opt/hadoop-2.5.2
            export HADOOP_COMMON_HOME=$HADOOP_HOME
            export HADOOP_MAPRED_HOME=$HADOOP_HOME
            export HADOOP_CONF_DIR=$HADOOP_HOME/etc/hadoop
            export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
            export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib"
            export JAVA_LIBRARY_PATH=$HADOOP_HOME/lib/native
            
            export PATH=$PATH:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$HADOOP_HOME/lib
            export CLASSPATH=.:$CLASSPATH:$HADOOP_HOME/bin
            
            保存退出
            source /etc/profile
        4.修改配置文件
            1.创建相关目录
                cd /opt/hadoop-2.5.2
                mkdir logs
                mkdir tmp
            2.修改相关配置文件相关参数(core-site.xml/hadoop-env.sh/hdfs-site.xml/log4j.properties
            /mapred-env.sh/mapred-site.xml/masters/slaves/yarn-env.sh/yarn-site.xml)
            
                ####core-site.xml####
                <configuration>
                <!-- 指定hdfs的nameservice为namenode-->
                <property>
                    <name>fs.defaultFS</name>
                    <value>hdfs://ns1:8020</value>
                </property>
                
                 <!-- 指定hadoop块大小 -->
                <property>
                    <name>io.file.buffer.size</name>
                    <value>131072</value>
                </property>
                
                 <!-- 指定hadoop临时目录 -->
                <property>
                    <name>hadoop.tmp.dir</name>
                    <value>/opt/hadoop-2.5.2/tmp</value>
                    <description>A base for other temporary directories.</description>
                </property>
                
                <!-- 指定zookeeper地址 -->
                <property>
                    <name>ha.zookeeper.quorum</name>
                    <value>hadoop.master:2181,hadoop.slaver1:2181,hadoop.slaver2:2181</value>
                </property>
                </configuration>
                
                ####hadoop-env.sh####
                export JAVA_HOME=/usr/java/jdk1.8.0_65
                export HADOOP_CLASSPATH=.:$HADOOP_CLASSPATH:$HADOOP_HOME/bin
                export CLASSPATH=.:$CLASSPATH:$HADOOP_HOME/bin
                
                ####hdfs-site.xml####
                <configuration>
                <property>
                <name>dfs.namenode.http-address</name>
                <value>hadoop.master:50070</value>
                <description>The address and the base port where the dfs namenode web ui will listen on.</description>
                </property>
    
                <property>
                <name>dfs.namenode.secondary.http-address</name>
                <value>hadoop.slaver1:50070</value>
                </property>
    
                <property>
                <name>dfs.namenode.checkpoint.dir</name>
                <value>file://${hadoop.tmp.dir}/dfs/namesecondary</value>
                <final>true</final>
                </property>
    
                <property>
                <name>dfs.namenode.name.dir</name>
                <value>file://${hadoop.tmp.dir}/dfs/name</value>
                <final>true</final>
                </property>
    
                <property>
                <name>dfs.datanode.data.dir</name>
                <value>file://${hadoop.tmp.dir}/dfs/data</value>
                <final>true</final>
                </property>
    
                <property>
                <name>dfs.replication</name>
                <value>3</value>
                </property>
    
                <property>
                <name>dfs.permissions</name>
                <value>false</value>
                </property>
    
                <property>
                <name>dfs.permissions.enabled</name>
                <value>false</value>
                </property>
    
                <property>
                <name>dfs.namenode.hosts.exclude</name>
                <value>/opt/hadoop-2.5.2/other/excludes</value>
                <description>Names a file that contains a list of hosts that are not permitted to connect to the namenode.  The full pathname of the file must be specified.  If the value is empty, no hosts are excluded.</description>
                </property>
    
                <property>
                <name>dfs.namenode.hosts</name>
                <value>/opt/hadoop-2.5.2/etc/hadoop/slaves</value>
                </property>
    
                <property>
                <name>dfs.blocksize</name>
                <value>134217728</value>
                </property>
    
                <!-- HBase configuration-->
                <property> 
                <name>dfs.datanode.max.xcievers</name> 
                <value>4096</value> 
                </property>
    
    
                <!--Zookeeper configuration-->
                <property>
                <name>dfs.nameservices</name>
                <value>ns1</value>
                </property>
    
                <property>
                <name>dfs.ha.namenodes.ns1</name>
                <value>nn1,nn2</value>
                </property>
    
                <property>
                <name>dfs.namenode.rpc-address.ns1.nn1</name>
                <value>hadoop.master:8020</value>
                </property>
    
                <property>
                <name>dfs.namenode.rpc-address.ns1.nn2</name>
                <value>hadoop.slaver1:8020</value>
                </property>
    
                <property>
                <name>dfs.namenode.http-address.ns1.nn1</name>
                <value>hadoop.master:50070</value>
                </property>
    
                <property>
                <name>dfs.namenode.http-address.ns1.nn2</name>
                <value>hadoop.slaver1:50070</value>
                </property>
                
                <property>
                <name>dfs.namenode.servicerpc-address.ns1.nn1</name>
                <value>hadoop.master:53310</value>
                </property>
                <property>
                <name>dfs.namenode.servicerpc-address.ns1.nn2</name>
                <value>hadoop.slaver1:53310</value>
                </property>
    
                 <!-- 指定JournalNode在本地磁盘存放数据的位置 -->
                <property>
                <name>dfs.journalnode.edits.dir</name>
                <value>/opt/zookeeper-3.4.7/journal</value>
                </property>
    
    
                <property>
                <name>dfs.namenode.shared.edits.dir</name>
                <value>qjournal://hadoop.master:8485;hadoop.slaver1:8485;hadoop.slaver2:8485/ns1</value>
                </property>
    
                <!-- 开启NameNode失败自动切换 -->
                <property>
                <name>dfs.ha.automatic-failover.enabled</name>
                <value>true</value>
                </property>
    
                <!-- 配置失败自动切换实现方式 -->
                <property>
                <name>dfs.client.failover.proxy.provider.ns1</name>
                <value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
                </property>
    
                 <!-- 指定zookeeper地址 -->
                <property>
                <name>ha.zookeeper.quorum</name>
                <value>hadoop.master:2181,hadoop.slaver1:2181,hadoop.slaver2:2181</value>
                </property>
    
                <!-- 配置隔离机制方法,多个机制用换行分割,即每个机制暂用-->
                <property>
                <name>dfs.ha.fencing.methods</name>
                <value>
                sshfence
                shell(/bin/true)
                </value>
                </property>
    
                <property>
                <name>dfs.ha.fencing.ssh.private-key-files</name>
                <value>/home/hadoop/.ssh/id_rsa</value>
                </property>
    
                <!-- 配置sshfence隔离机制超时时间 -->
                <property>
                <name>dfs.ha.fencing.ssh.connect-timeout</name>
                <value>30000</value>
                </property> 
                </configuration>
                
                ####log4j.properties####
                hadoop.root.logger=INFO,console
                hadoop.log.dir=/opt/hadoop-2.5.2/logs
                hadoop.log.file=hadoop.log
                
                ####mapred-env.sh####
                export HADOOP_JOB_HISTORYSERVER_HEAPSIZE=1000
                export HADOOP_MAPRED_ROOT_LOGGER=INFO,RFA
    
                ####mapred-site.xml####
                <configuration>
                 <property>
                    <name>mapreduce.framework.name</name>
                    <value>yarn</value>
                </property>    
    
                <property>
                    <name>mapreduce.application.classpath</name>
                    <value>
                    /opt/hadoop-2.5.2/etc/hadoop,
                    /opt/hadoop-2.5.2/share/hadoop/common/*,
                    /opt/hadoop-2.5.2/share/hadoop/common/lib/*,
                    /opt/hadoop-2.5.2/share/hadoop/hdfs/*,
                    /opt/hadoop-2.5.2/share/hadoop/hdfs/lib/*,
                    /opt/hadoop-2.5.2/share/hadoop/mapreduce/*,
                    /opt/hadoop-2.5.2/share/hadoop/mapreduce/lib/*,
                    /opt/hadoop-2.5.2/share/hadoop/yarn/*,
                    /opt/hadoop-2.5.2/share/hadoop/yarn/lib/*
                    </value>
                </property>
                <property>
                    <name>mapreduce.jobhistory.address</name>
                    <value>hadoop.master:10020</value>
                </property>
                <property>
                    <name>mapreduce.jobhistory.webapp.address</name>
                    <value>hadoop.master:19888</value>
                </property>
                <property>
                        <name>mapreduce.jobhistory.done-dir</name>
                        <value>/history/done</value>
                </property>
                <property>
                   <name>mapreduce.jobhistory.intermediate-done-dir</name>
                   <value>/history/done_intermediate</value>
                </property>
                </configuration>
    
                ####masters####
                hadoop.slaver1  //存储secondary namenode节点主机名
                
                ####slaves####
                hadoop.slaver1
                hadoop.slaver2
                hadoop.slaver3
                
                ####yarn-env.sh####
                export JAVA_HOME=/usr/java/jdk1.8.0_65
                
                ####yarn-site.xml####
                <configuration>
                <!-- Site specific YARN configuration properties -->
                <property>
                <name>yarn.resourcemanager.address</name>
                <value>hadoop.master:18040</value>
                </property>
    
                <property>
                <name>yarn.resourcemanager.scheduler.address</name>
                <value>hadoop.master:18030</value>
                </property>
    
                <property>
                <name>yarn.resourcemanager.resource-tracker.address</name>
                <value>hadoop.master:18025</value>
                </property>
    
                <property>
                <name>yarn.resourcemanager.admin.address</name>
                <value>hadoop.master:18041</value>
                </property>
    
                <property>
                <name>yarn.resourcemanager.webapp.address</name>
                <value>hadoop.master:8088</value>
                </property>
    
                <property>
                <name>yarn.nodemanager.local-dirs</name>
                <value>/opt/hadoop-2.5.2/other/mynode</value>
                </property>
    
                <property>
                <name>yarn.nodemanager.log-dirs</name>
                <value>/opt/hadoop-2.5.2/other/logs</value>
                </property>
    
                <property>
                <name>yarn.nodemanager.log.retain-seconds</name>
                <value>10800</value>
                </property>
    
                <property>
                <name>yarn.nodemanager.remote-app-log-dir</name>
                <value>/opt/hadoop-2.5.2/other/logs</value>
                </property>
    
                <property>
                <name>yarn.nodemanager.remote-app-log-dir-suffix</name>
                <value>logs</value>
                </property>
    
                <property>
                <name>yarn.log-aggregation.retain-seconds</name>
                <value>-1</value>
                </property>
    
                <property>
                <name>yarn.log-aggregation.retain-check-interval-seconds</name>
                <value>-1</value>
                </property>
    
                <property>
                <name>yarn.nodemanager.aux-services</name>
                <value>mapreduce_shuffle</value>
                </property>
    
                <!--zookeeper-->
                <property>
                <name>yarn.resourcemanager.ha.enabled</name>
                <value>true</value>
                </property>
    
                <property>
                <name>yarn.resourcemanager.cluster-id</name>
                <value>yrc</value>
                </property>
    
    
                <property>
                <name>yarn.resourcemanager.ha.rm-ids</name>
                <value>rm1,rm2</value>
                </property>
    
    
                <property>
                <name>yarn.resourcemanager.hostname.rm1</name>
                <value>hadoop.master</value>
                </property>
                <property>
                <name>yarn.resourcemanager.hostname.rm2</name>
                <value>hadoop.slaver1</value>
                </property>
    
    
                <property>
                <name>yarn.resourcemanager.zk-address</name>
                <value>hadoop.master:2181,hadoop.slaver1:2181,hadoop.slaver2:2181</value>
                </property>
    
                <property>
                <name>yarn.nodemanager.aux-services</name>
                <value>mapreduce_shuffle</value>
                </property>
                </configuration>
        5.分发到各个节点中
           scp -r /opt/hadoop-2.5.2 hadoop@hadoop.master:/opt    
        6.首次启动
            6.1 启动zk
                zkServer.sh start(zk 各个节点执行)
            6.2 启动journalnode
                hadoop-daemon.sh start journalnode(zk 各个节点执行)
            6.3 格式化Namenode
                hadoop namenode -format(namenode 节点运行  注意是hadoop  不是hdfs)
            6.4 启动Namenode
                hadoop-daemon.sh start namenode(namenode 节点运行)
            6.5 格式化另一个Namenode
                hadoop namenode -bootstrapStandby(在secondary namenode节点运行)
            6.6 格式化zk
                 hdfs zkfc -formatZK (namenode节点执行)
            6.7 将所有的服务停止
                stop-all.sh
                注意此时需在每个zk节点执行 zkServer.sh stop
        7.正常启动
            1.启动zk
                zkServer.sh start(zk 各个节点执行)
            2.启动所有服务
                start-all.sh   //或者先执行start-dfs.sh   再执行start-yarn.sh
            3.启动后台历史服务
                mr-jobhistory-daemon.sh start historyserver(在namenode节点执行即可)
            4.启动备份resourcemanger
                yarn-daemon.sh start resourcemanager  //在备份节点运行
            5.启动备份namenode
                hadoop-daemon.sh start namenode  //在备份节点运行
                
        8.验证
            1.jps验证 查看相关进程
            2.web验证
                hdfs   主机名:50070
                yarn   主机名:8088
                history  主机名:19888
                //以上主机名均指 namenode节点主机名 (此时namenode节点是active状态)
            3.查看active状态
                hdfs  web查看  有active状态和stangby状态两种
                yarn  shell命令查看  
                    yarn rmadmin -getServiceState rm1(或者rm2)
                    //其中rm1/rm2为配置文件中配置的名称
            4.kill当前active的namenode 看能不自己切换到standby namenode上
        9.常见命令
             ####启动/关闭yarn jobhistory记录####
             web: //namenode:19888  //其中namenode 为集群任意节点主机名
             mr-jobhistory-daemon.sh start historyserver  //集群中每台主机执行一次
             mr-jobhistory-daemon.sh stop historyserver
             
             ####启动/关闭/查看 zk#####
             zkServer.sh start    //集群中每台主机执行一次
             zkServer.sh stop
             zkServer.sh status
             
             ####启动/关闭/查看 yarn####
             yarn-daemon.sh start resourcemanager
             yarn-daemon.sh stop resourcemanager
             yarn-daemon.sh stop nodemanager
             yarn rmadmin -getServiceState rm2  //其中rm2是集群配置的别名
             
             web: //namenode:8088  //其中namenode是active状态的主机名
             
             ####启动/关闭/查看 hadoop####
             hadoop-daemon.sh start namenode
             hadoop-daemon.sh stop namenode
             hadoop-daemon.sh stop datanode
             web: //namenode:50070  //其中namenode是active状态的主机名
             
             ####格式化zkNode#### 
             hdfs zkfc -formatZK //namenode节点执行   注意是hdfs  不是hadoop
             
             ####启动/关闭zkNode#####
             hadoop-daemon.sh start zkfc
             hadoop-daemon.sh stop zkfc
             
             ####查看/删除job####
             hadoop job -list
             hadoop job -kill 任务ID //注意不是applicationID
             
             ####初始化Journal Storage Directory####
             hdfs namenode -initializeSharedEdits  //非ha转成ha时执行 如果一开始已经是ha了无需执行
             
             ####初始化namenode####
             hadoop namenode -format  //namenode端执行
             
             hdfs namenode -bootstrapStandby //secend namenode端执行 执行前需保证namenode已经启动
        
        
        10.常见异常
            1.Journal Storage Directory /opt/zookeeper-3.4.7/journal/ns1 not formatted
                原因:由于之前hadoop没部署ha,改成ha后形成错误
                解决办法:
                        1.将配置文件hdfs-site.xml中dfs.journalnode.edits.dir对应的目录删除
                        2.hdfs namenode -initializeSharedEdits(namenode 执行)
            2.datanode起来了,namenode起不来
                解决办法:
                    1.查看配置文件相关配置项是否配置正确
                    2.查看环境变量是否配置正确
                    3.查看主机网络映射是否配置正确
                    4.是否二次格式化namenode  如果是,则需要将datanode 的clusterID和namespaceID改成namenode一致
                        目录一般是tmp目录下
                    5.重启hdfs
                    6.如果执行上述还不行,则在hadoop服务运行状态下将tmp目录下所有文件夹删除,再格式化,重启服务
            3.两个namenode起来了,但都是standby状态
                解决办法:
                    1.是否均启动zk
                    2.格式化zfkc
                        hdfs zkfc -formatZK
                    3.所有服务重启(含zk)
                
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
    
        
  • 相关阅读:
    html5和css3的新特性
    实现全选按钮的js代码
    window.location对象获取浏览器地址栏的地址信息
    珍爱网前端笔试题之九宫格的实现
    c# array arraylist list
    解决visual studio不能发现单元测试、无法运行单元测试的方法
    Linux 学习笔记
    C++语言学习
    C语言学习
    日志打印,设置开关类【编程技巧】
  • 原文地址:https://www.cnblogs.com/ciade/p/5141264.html
Copyright © 2011-2022 走看看