传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=2005
令F(i)表示i | gcd(x, y)的对数,f(i)表示gcd(x, y) = i的对数,那么显然
f(i) = F(i) - f(2 * i) - f(3 * i) - ...
F(i)很好求,显然,F(i) = (n / i) * (m / i),除法向下取整。
之后就简单了~
#include <cstdio>
#include <algorithm>
const int maxn = 100005;
int n, m, lmt;
long long f[maxn], ans;
int main(void) {
scanf("%d%d", &n, &m);
lmt = std::min(n, m);
for (int i = lmt; i; --i) {
f[i] = (long long)(n / i) * (long long)(m / i);
for (int j = i << 1; j <= lmt; j += i) {
f[i] -= f[j];
}
ans += f[i] * ((i << 1) - 1);
}
printf("%lld
", ans);
return 0;
}