zoukankan      html  css  js  c++  java
  • SpringBoot 2.0 整合sharding-jdbc中间件,实现数据分库分表

    本文源码:GitHub·点这里 || GitEE·点这里

    一、水平分割

    1、水平分库

    1)、概念:
    以字段为依据,按照一定策略,将一个库中的数据拆分到多个库中。
    2)、结果
    每个库的结构都一样;数据都不一样;
    所有库的并集是全量数据;

    2、水平分表

    1)、概念
    以字段为依据,按照一定策略,将一个表中的数据拆分到多个表中。
    2)、结果
    每个表的结构都一样;数据都不一样;
    所有表的并集是全量数据;

    二、Shard-jdbc 中间件

    1、架构图

    2、特点

    1)、Sharding-JDBC直接封装JDBC API,旧代码迁移成本几乎为零。
    2)、适用于任何基于Java的ORM框架,如Hibernate、Mybatis等 。
    3)、可基于任何第三方的数据库连接池,如DBCP、C3P0、 BoneCP、Druid等。
    4)、以jar包形式提供服务,无proxy代理层,无需额外部署,无其他依赖。
    5)、分片策略灵活,可支持等号、between、in等多维度分片,也可支持多分片键。
    6)、SQL解析功能完善,支持聚合、分组、排序、limit、or等查询。

    三、项目演示

    1、项目结构

    springboot     2.0 版本
    druid          1.1.13 版本
    sharding-jdbc  3.1 版本
    

    2、数据库配置


    一台基础库映射(shard_one)
    两台库做分库分表(shard_two,shard_three)。
    表使用:table_one,table_two
    

    3、核心代码块

    • 数据源配置文件
    spring:
      datasource:
        # 数据源:shard_one
        dataOne:
          type: com.alibaba.druid.pool.DruidDataSource
          druid:
            driverClassName: com.mysql.jdbc.Driver
            url: jdbc:mysql://localhost:3306/shard_one?useUnicode=true&characterEncoding=UTF8&zeroDateTimeBehavior=convertToNull&useSSL=false
            username: root
            password: 123
            initial-size: 10
            max-active: 100
            min-idle: 10
            max-wait: 60000
            pool-prepared-statements: true
            max-pool-prepared-statement-per-connection-size: 20
            time-between-eviction-runs-millis: 60000
            min-evictable-idle-time-millis: 300000
            max-evictable-idle-time-millis: 60000
            validation-query: SELECT 1 FROM DUAL
            # validation-query-timeout: 5000
            test-on-borrow: false
            test-on-return: false
            test-while-idle: true
            connectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000
        # 数据源:shard_two
        dataTwo:
          type: com.alibaba.druid.pool.DruidDataSource
          druid:
            driverClassName: com.mysql.jdbc.Driver
            url: jdbc:mysql://localhost:3306/shard_two?useUnicode=true&characterEncoding=UTF8&zeroDateTimeBehavior=convertToNull&useSSL=false
            username: root
            password: 123
            initial-size: 10
            max-active: 100
            min-idle: 10
            max-wait: 60000
            pool-prepared-statements: true
            max-pool-prepared-statement-per-connection-size: 20
            time-between-eviction-runs-millis: 60000
            min-evictable-idle-time-millis: 300000
            max-evictable-idle-time-millis: 60000
            validation-query: SELECT 1 FROM DUAL
            # validation-query-timeout: 5000
            test-on-borrow: false
            test-on-return: false
            test-while-idle: true
            connectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000
        # 数据源:shard_three
        dataThree:
          type: com.alibaba.druid.pool.DruidDataSource
          druid:
            driverClassName: com.mysql.jdbc.Driver
            url: jdbc:mysql://localhost:3306/shard_three?useUnicode=true&characterEncoding=UTF8&zeroDateTimeBehavior=convertToNull&useSSL=false
            username: root
            password: 123
            initial-size: 10
            max-active: 100
            min-idle: 10
            max-wait: 60000
            pool-prepared-statements: true
            max-pool-prepared-statement-per-connection-size: 20
            time-between-eviction-runs-millis: 60000
            min-evictable-idle-time-millis: 300000
            max-evictable-idle-time-millis: 60000
            validation-query: SELECT 1 FROM DUAL
            # validation-query-timeout: 5000
            test-on-borrow: false
            test-on-return: false
            test-while-idle: true
            connectionProperties: druid.stat.mergeSql=true;druid.stat.slowSqlMillis=5000
    
    • 数据库分库策略
    /**
     * 数据库映射计算
     */
    public class DataSourceAlg implements PreciseShardingAlgorithm<String> {
    
        private static Logger LOG = LoggerFactory.getLogger(DataSourceAlg.class);
        @Override
        public String doSharding(Collection<String> names, PreciseShardingValue<String> value) {
            LOG.debug("分库算法参数 {},{}",names,value);
            int hash = HashUtil.rsHash(String.valueOf(value.getValue()));
            return "ds_" + ((hash % 2) + 2) ;
        }
    }
    
    • 数据表1分表策略
    /**
     * 分表算法
     */
    public class TableOneAlg implements PreciseShardingAlgorithm<String> {
        private static Logger LOG = LoggerFactory.getLogger(TableOneAlg.class);
        /**
         * 该表每个库分5张表
         */
        @Override
        public String doSharding(Collection<String> names, PreciseShardingValue<String> value) {
            LOG.debug("分表算法参数 {},{}",names,value);
            int hash = HashUtil.rsHash(String.valueOf(value.getValue()));
            return "table_one_" + (hash % 5+1);
        }
    }
    
    • 数据表2分表策略
    /**
     * 分表算法
     */
    public class TableTwoAlg implements PreciseShardingAlgorithm<String> {
        private static Logger LOG = LoggerFactory.getLogger(TableTwoAlg.class);
        /**
         * 该表每个库分5张表
         */
        @Override
        public String doSharding(Collection<String> names, PreciseShardingValue<String> value) {
            LOG.debug("分表算法参数 {},{}",names,value);
            int hash = HashUtil.rsHash(String.valueOf(value.getValue()));
            return "table_two_" + (hash % 5+1);
        }
    }
    
    • 数据源集成配置
    /**
     * 数据库分库分表配置
     */
    @Configuration
    public class ShardJdbcConfig {
        // 省略了 druid 配置,源码中有
        /**
         * Shard-JDBC 分库配置
         */
        @Bean
        public DataSource dataSource (@Autowired DruidDataSource dataOneSource,
                                      @Autowired DruidDataSource dataTwoSource,
                                      @Autowired DruidDataSource dataThreeSource) throws Exception {
            ShardingRuleConfiguration shardJdbcConfig = new ShardingRuleConfiguration();
            shardJdbcConfig.getTableRuleConfigs().add(getTableRule01());
            shardJdbcConfig.getTableRuleConfigs().add(getTableRule02());
            shardJdbcConfig.setDefaultDataSourceName("ds_0");
            Map<String,DataSource> dataMap = new LinkedHashMap<>() ;
            dataMap.put("ds_0",dataOneSource) ;
            dataMap.put("ds_2",dataTwoSource) ;
            dataMap.put("ds_3",dataThreeSource) ;
            Properties prop = new Properties();
            return ShardingDataSourceFactory.createDataSource(dataMap, shardJdbcConfig, new HashMap<>(), prop);
        }
    
        /**
         * Shard-JDBC 分表配置
         */
        private static TableRuleConfiguration getTableRule01() {
            TableRuleConfiguration result = new TableRuleConfiguration();
            result.setLogicTable("table_one");
            result.setActualDataNodes("ds_${2..3}.table_one_${1..5}");
            result.setDatabaseShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new DataSourceAlg()));
            result.setTableShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new TableOneAlg()));
            return result;
        }
        private static TableRuleConfiguration getTableRule02() {
            TableRuleConfiguration result = new TableRuleConfiguration();
            result.setLogicTable("table_two");
            result.setActualDataNodes("ds_${2..3}.table_two_${1..5}");
            result.setDatabaseShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new DataSourceAlg()));
            result.setTableShardingStrategyConfig(new StandardShardingStrategyConfiguration("phone", new TableTwoAlg()));
            return result;
        }
    }
    
    • 测试代码执行流程
    @RestController
    public class ShardController {
        @Resource
        private ShardService shardService ;
        /**
         * 1、建表流程
         */
        @RequestMapping("/createTable")
        public String createTable (){
            shardService.createTable();
            return "success" ;
        }
        /**
         * 2、生成表 table_one 数据
         */
        @RequestMapping("/insertOne")
        public String insertOne (){
            shardService.insertOne();
            return "SUCCESS" ;
        }
        /**
         * 3、生成表 table_two 数据
         */
        @RequestMapping("/insertTwo")
        public String insertTwo (){
            shardService.insertTwo();
            return "SUCCESS" ;
        }
        /**
         * 4、查询表 table_one 数据
         */
        @RequestMapping("/selectOneByPhone/{phone}")
        public TableOne selectOneByPhone (@PathVariable("phone") String phone){
            return shardService.selectOneByPhone(phone);
        }
        /**
         * 5、查询表 table_one 数据
         */
        @RequestMapping("/selectTwoByPhone/{phone}")
        public TableTwo selectTwoByPhone (@PathVariable("phone") String phone){
            return shardService.selectTwoByPhone(phone);
        }
    }
    

    四、项目源码

    GitHub·地址
    https://github.com/cicadasmile/middle-ware-parent
    GitEE·地址
    https://gitee.com/cicadasmile/middle-ware-parent
    

  • 相关阅读:
    正则表达式中?=和?:和?!的理解
    Python isinstance() 函数
    什么是REST架构
    [iOS常见问题] 关于使用QQ做第三方登录的问题!
    js与webview 常用交互代码
    AFNetworking 使用 核心代码
    NSString / NSData / char* 类型之间的转换
    集合视图 代码
    IOS面试问题总结
    UIViewController的生命周期及iOS程序执行顺序
  • 原文地址:https://www.cnblogs.com/cicada-smile/p/10970626.html
Copyright © 2011-2022 走看看