zoukankan      html  css  js  c++  java
  • sicily 1002 Antiprime Sequences

    Description

    Given a sequence of consecutive integers n,n+1,n+2,...,m, an anti-prime sequence is a rearrangement of these integers so that each adjacent pair of integers sums to a composite (non-prime) number. For example, if n = 1 and m = 10, one such anti-prime sequence is 1,3,5,4,2,6,9,7,8,10. This is also the lexicographically first such sequence. We can extend the definition by defining a degree danti-prime sequence as one where all consecutive subsequences of length 2,3,...,d sum to a composite number. The sequence above is a degree 2 anti-prime sequence, but not a degree 3, since the subsequence 5, 4, 2 sums to 11. The lexicographically .rst degree 3 anti-prime sequence for these numbers is 1,3,5,4,6,2,10,8,7,9.

    Input

    Input will consist of multiple input sets. Each set will consist of three integers, n, m, and d on a single line. The values of n, m and d will satisfy 1 <= n < m <= 1000, and 2 <= d <= 10. The line 0 0 0 will indicate end of input and should not be processed.

    Output

    For each input set, output a single line consisting of a comma-separated list of integers forming a degree danti-prime sequence (do not insert any spaces and do not split the output over multiple lines). In the case where more than one anti-prime sequence exists, print the lexicographically first one (i.e., output the one with the lowest first value; in case of a tie, the lowest second value, etc.). In the case where no anti-prime sequence exists, output No anti-prime sequence exists.

    Sample Input

    1 10 2
    1 10 3
    1 10 5
    40 60 7
    0 0 0

    Sample Output

    1,3,5,4,2,6,9,7,8,10
    1,3,5,4,6,2,10,8,7,9
    No anti-prime sequence exists.
    40,41,43,42,44,46,45,47,48,50,55,53,52,60,56,49,51,59,58,57,54

    分析:

    本题的思路很直白,因为数据量并不是非常大,只是1000的范围,长度为10,那么和最大也只有10000以内,所以可以暴力搜索,对每一个节点都进行判断并且迭代搜索,明显是用DFS。注意先用筛法做个素数表辅助判断,直接进行素数判断太麻烦,会超时。这里看到别人的代码,说道DFS卡时,其实就是限制DFS的总搜索次数,模糊判断用来节省时间。当然这样答案并不准确,但是对于数据规模较小的时候,可以取一些极限值测试,本题4000次搜索就足够了。

    代码:

     1 // Problem#: 1002
     2 // Submission#: 1792032
     3 // The source code is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License
     4 // URI: http://creativecommons.org/licenses/by-nc-sa/3.0/
     5 // All Copyright reserved by Informatic Lab of Sun Yat-sen University
     6 #include<iostream>
     7 #include<cstring>
     8 using namespace std;
     9 
    10 #define MAX 10000
    11 #define N 1010
    12 
    13 bool isPrime[MAX];
    14 int prime[MAX];
    15 bool visit[N];
    16 int re[N];
    17 int n,m,d,t,sum;
    18 bool flag;
    19 
    20 void primeList(){
    21     memset(isPrime,true,sizeof(isPrime));
    22     for(int i = 2;i <= MAX;++i){
    23         if(isPrime[i])  prime[++prime[0]] = i;
    24         for(int j = 1,k;j <= MAX && (k = i * prime[j]) <= MAX;++j)
    25         {
    26             isPrime[k] = false;
    27             if(i % prime[j] == 0)   break;
    28         }
    29     }
    30 }
    31 
    32 bool judge(int len){
    33     int sum;
    34     if(len <= 1)    return true;
    35     for(int i = 0;i < len;++i){
    36         sum = 0;
    37         if(i <= len - d){
    38             for(int j = i;j - i + 1<= d ;++j){
    39                 sum += re[j];
    40                 if(j-i+1 > 1 && isPrime[sum])   return false;
    41             }
    42         }else{
    43             for(int j = i;j < len;++j){
    44                 sum += re[j];
    45                 if(j-i+1 > 1 && isPrime[sum])   return false;
    46             }
    47         }
    48     }
    49     return true;
    50 }
    51             
    52 void dfs(int num){
    53     if(++t > 4000)  return;
    54     if(flag)    return;
    55     if(!judge(num)) return;
    56     if(num== m - n + 1){
    57         flag = 1;
    58         return;
    59     }
    60     for(int i = n;i <= m && !flag;++i){
    61         if(visit[i])    continue;
    62         re[num] = i;
    63         visit[i] = 1;
    64         dfs(num+1);
    65         visit[i] = 0;
    66     }
    67 }
    68 
    69 int main(){
    70     primeList();
    71     while(cin>>n>>m>>d && n && m && d){
    72         flag = false;
    73         t = 0;
    74         memset(visit,0,sizeof(visit));
    75         dfs(0);
    76         if(flag){
    77             cout << re[0];
    78             for( int i=1 ; i<m-n+1 ; ++i ) cout << "," << re[i];
    79             cout << endl;
    80         }else cout << "No anti-prime sequence exists." << endl;
    81     }
    82     return 0;
    83 }
  • 相关阅读:
    8.2
    Telnet远程控制协议
    2020/6/29
    HCIA VRP基础命令(二)
    HCIA VRP基础命令(一)
    解决ERROR 2002 (HY000): Can't connect to local MySQL server through socket '/var/run/mysqld/mysqld.sock'报错问题
    nginx配置文件nginx.conf
    nginx服务器搭建
    FTP服务器
    NFS
  • 原文地址:https://www.cnblogs.com/ciel/p/2876767.html
Copyright © 2011-2022 走看看