zoukankan      html  css  js  c++  java
  • CF1153F Serval and Bonus Problem

    CF1153F Serval and Bonus Problem

    官方的解法是(O(n ^ 2))的,这里给出一个(O(n log n))的做法。

    首先对于长度为(l)的线段,显然它的答案就是长度为(1)的线段的答案( imes l),这样做只是为了方便计算。

    考虑对于数轴上区间([0,1])内任意一个点(x),它被一条随机线段覆盖的概率是多少:线段的两个端点都在它左边的概率是(x ^ 2)、都在它右边的概率是((1 - x) ^ 2),那么它被覆盖的概率即为(p(x) = 1 - x^2 - (1 - x) ^ 2 = 2 x (1 - x))

    那么他被(ge k)条线段覆盖的概率为(f(x) = sum limits _{i = k} ^ n inom{n}{i} p(x) ^ i (1 - p(x)) ^ {n - i})

    根据定积分的定义就得到区间([0,1])内被(ge k)条线段覆盖的长度期望为(int _{0} ^{1} f(x) mathrm{d} x)

    现在我们的问题就是怎么算这个东西了:

    [egin{align*} int _ 0 ^ 1 f(x) mathrm{d} x & = int _ 0 ^ 1 sum limits _{i = k} ^ n inom {n} {i} (2x (1 - x)) ^ i (1 - 2x (1 - x)) ^ {n - i} mathrm{d} x \ & = sum limits _{i = k} ^ n inom {n} {i} int _ 0 ^ 1 (2x (1 - x)) ^ i sum limits _{j = 0} ^ {n - i} inom {n - i} {j} (-2x(1 - x)) ^ j mathrm{d} x \ & = sum limits _{i = k} ^n inom {n} {i} sum limits _{j = 0} ^ {n - i} inom {n - i} {j} (-1) ^ j 2 ^ {(i + j)} int _ 0 ^ 1 x ^ {i + j} (1 - x) ^ {i + j} mathrm{d} x end{align*} ]

    推到这里,就可以把积分去掉了,这是一个Beta Function的形式:记结论吧

    [B(x, y) = int _ 0 ^ 1 t ^ {x - 1} (1 - t) ^ {y - 1} mathrm{d} t = frac {(x - 1) ! (y - 1) !} {(x + y - 1) !} ]

    代入得:

    [egin{align*} int _ 0 ^ 1 f(x) mathrm{d} x & = sum limits _{i = k} ^n inom {n} {i} sum limits _{j = 0} ^ {n - i} inom {n - i} {j} (-1) ^ j 2 ^ {(i + j)} frac {((i + j) ! ) ^ 2} {(2(i + j) + 1) !} \ & = n ! sum limits _{i = k} ^ n sum limits _ {j = 0} ^ {n - i} frac {1} {i !} frac {(-1) ^ j} {j !} frac {2 ^ {i + j} ((i + j) !) ^ 2} {(2(i+ j) + 1) ! (n - (i + j)) !} end{align*} ]

    (t = i + j)(f[i] = frac {1} {i})(g[j] = frac {(-1) ^ j} {j !})(h[t] = frac{2^t (t !) ^ 2} {(2 t + 1) ! (n - t) !}),考虑枚举(t)

    [egin{align*} int _ 0 ^ 1 f(x) mathrm{d} x & = n ! sum limits _{t = k} ^ n h[t] sum limits _ {i = k} ^ t f[i] g[t - i] end{align*} ]

    这后面就是一个非常显然的卷积式子了,直接FFT即可。

    答案记得( imes l)

    //written by newbiechd
    #include <cstdio>
    #include <cctype>
    #include <algorithm>
    #define BUF 1000000
    using namespace std;
    const int N = 100003, yyb = 998244353, Gg = 3, Gi = 332748118;
    char buf[BUF], *p1, *p2;
    inline char gc() { return p1 == p2 && (p2 = (p1 = buf) + fread(buf, 1, BUF, stdin), p1 == p2) ? EOF : *p1++; }
    inline int rd() {
        register int f = 0;
        register char c;
        while (!isdigit(c = gc())) {}
        do
            f = f * 10 + (c ^ 48);
        while (isdigit(c = gc()));
        return f;
    }
    int rev[N], G[2][N];
    inline int power(int x, int y) {
        register int o = 1;
        for (; y; y >>= 1, x = 1ll * x * x % yyb)
            if (y & 1)
                o = 1ll * o * x % yyb;
        return o;
    }
    inline void ntt(int *f, int len, int opt) {
        register int i, j, k, x, y, p, q;
        for (i = 1; i < len; ++i)
            if (i < rev[i])
                swap(f[i], f[rev[i]]);
        for (i = 1; i < len; i <<= 1) {
            p = G[opt][i];
            for (j = 0; j < len; j += i << 1)
                for (k = 0, q = 1; k < i; ++k, q = 1ll * p * q % yyb)
                    x = f[j | k], y = 1ll * q * f[i | j | k] % yyb, f[j | k] = (x + y) % yyb, f[i | j | k] = (x - y) % yyb;
        }
    }
    int fac[N], invFac[N], f[N], g[N], h[N];
    int main() {
    #ifndef ONLINE_JUDGE
        freopen("a.in", "r", stdin);
        freopen("a.out", "w", stdout);
    #endif
        int n = rd(), m = n << 1 | 1, k = rd(), l = rd(), i, len, tmp, ans = 0;
        fac[0] = 1;
        for (i = 1; i <= m; ++i)
            fac[i] = 1ll * fac[i - 1] * i % yyb;
        invFac[m] = power(fac[m], yyb - 2);
        for (i = m; i; --i)
            invFac[i - 1] = 1ll * invFac[i] * i % yyb;
        for (i = k; i <= n; ++i)
            f[i] = invFac[i];
        for (i = 0; i <= n; ++i)
            g[i] = i & 1 ? yyb - invFac[i] : invFac[i];
        for (len = 1; len <= m; len <<= 1) {}
        for (i = 1; i < len; ++i)
            rev[i] = (rev[i >> 1] >> 1) | (i & 1 ? len >> 1 : 0);
        for (i = 1; i < len; i <<= 1)
            G[0][i] = power(Gg, (yyb - 1) / (i << 1)), G[1][i] = power(Gi, (yyb - 1) / (i << 1));
        ntt(f, len, 0), ntt(g, len, 0);
        for (i = 0; i < len; ++i)
            f[i] = 1ll * f[i] * g[i] % yyb;
        ntt(f, len, 1), tmp = power(len, yyb - 2);
        for (i = 1; i <= n; ++i)
            f[i] = 1ll * f[i] * tmp % yyb;
        for (i = 1, tmp = 2; i <= n; tmp = (tmp << 1) % yyb, ++i)
            h[i] = 1ll * fac[i] * fac[i] % yyb * tmp % yyb * invFac[i << 1 | 1] % yyb * invFac[n - i] % yyb;
        for (i = k; i <= n; ++i)
            ans = (1ll * f[i] * h[i] % yyb + ans) % yyb;
        ans = 1ll * ans * fac[n] % yyb * l % yyb, printf("%d
    ", (ans + yyb) % yyb);
        return 0;
    }
    
    
  • 相关阅读:
    post 跨域
    鼠标滚轮 控制作用滚动
    es5的特性 有多少你没用过
    javascript 定义修改属性值
    javascript 原型继承
    C# windows 服务 操作实例
    linq to xml 操作实例
    伪随机数 避免操作
    linq 分组包含时间操作
    时间转换操作
  • 原文地址:https://www.cnblogs.com/cj-chd/p/10715436.html
Copyright © 2011-2022 走看看