zoukankan      html  css  js  c++  java
  • FFT学习笔记

    总结

    $here$

    单位根

    $n$次单位根$w_n^i$满足$(w_{n}^i)^n=1$

    $ ext{DFT}$的加速版本

    设:

    $$ f(x)=sum_{i=1}^{n-1}a_ix^i \ f^{[0]}(x)=a_0 + a_2x+...+a_{n-2}x^{n/2-1} \ f^{[1]}(x)=a_1 + a_3x+...+a_{n-1}x^{n/2-1} \ herefore f(x) = f^{[0]}(x^2)+xf^{[1]}(x^2) \ herefore f(w_n^k)=f^{[0]}(w_{n/2}^k)+w_n^kf^{[1]}(w_{n/2}^k) $$

    同理:

    $$ herefore f(w_n^{k+n/2})=f^{[0]}(w_{n/2}^k)-w_n^kf^{[1]}(w_{n/2}^k) $$

    这样可以递归计算。

    $ ext{NTT}$

    $$ ecause w_n equiv g^{frac{p-1}n} $$

    于是将单位根换成原根即可

    代码

    $ ext{FFT}$

    #include<cstdio>
    #include<cstring>
    #include<cctype>
    #include<cmath>
    #include<algorithm>
    #define RG register
    #define file(x) freopen(#x".in", "r", stdin);freopen(#x".out", "w", stdout);
    #define clear(x, y) memset(x, y, sizeof(x))
    
    inline int read()
    {
    	int data = 0, w = 1; char ch = getchar();
    	while(ch != '-' && (!isdigit(ch))) ch = getchar();
    	if(ch == '-') w = -1, ch = getchar();
    	while(isdigit(ch)) data = data * 10 + (ch ^ 48), ch = getchar();
    	return data * w;
    }
    
    const int maxn(3e6 + 10);
    const double pi(acos(-1));
    struct complex { double x, y; } a[maxn], b[maxn];
    inline complex operator + (const complex &lhs, const complex &rhs)
    	{ return (complex) {lhs.x + rhs.x, lhs.y + rhs.y}; };
    inline complex operator - (const complex &lhs, const complex &rhs)
    	{ return (complex) {lhs.x - rhs.x, lhs.y - rhs.y}; };
    inline complex operator * (const complex &lhs, const complex &rhs)
    {
    	return (complex) {lhs.x * rhs.x - lhs.y * rhs.y,
    		lhs.y * rhs.x + lhs.x * rhs.y};
    }
    
    int n, m, r[maxn], P;
    template<int opt> void FFT(complex *p)
    {
    	for(RG int i = 0; i < n; i++) if(i < r[i]) std::swap(p[i], p[r[i]]);
    	for(RG int i = 1; i < n; i <<= 1)
    	{
    		complex rot = (complex) {cos(pi / i), opt * sin(pi / i)};
    		for(RG int j = 0; j < n; j += (i << 1))
    		{
    			complex w = (complex) {1, 0};
    			for(RG int k = 0; k < i; ++k, w = w * rot)
    			{
    				complex x = p[j + k], y = w * p[i + j + k];
    				p[j + k] = x + y, p[i + j + k] = x - y;
    			}
    		}
    	}
    }
    
    int main()
    {
    #ifndef ONLINE_JUDGE
    	file(cpp);
    #endif
    	n = read(), m = read();
    	for(RG int i = 0; i <= n; i++) a[i].x = read();
    	for(RG int i = 0; i <= m; i++) b[i].x = read();
    	for(m += n, n = 1; n <= m; n <<= 1, ++P);
    	for(RG int i = 0; i < n; i++)
    		r[i] = (r[i >> 1] >> 1) | ((i & 1) << (P - 1));
    	FFT<1>(a), FFT<1>(b);
    	for(RG int i = 0; i < n; i++) a[i] = a[i] * b[i];
    	FFT<-1>(a);
    	for(RG int i = 0; i <= m; i++) printf("%d ", (int)(a[i].x / n + .5));
    	return 0;
    }
    

    $ ext{NTT}$

    #include<cstdio>
    #include<cstring>
    #include<cctype>
    #include<algorithm>
    #define RG register
    #define file(x) freopen(#x".in", "r", stdin);freopen(#x".out", "w", stdout);
    #define clear(x, y) memset(x, y, sizeof(x))
    
    inline int read()
    {
    	int data = 0, w = 1; char ch = getchar();
    	while(ch != '-' && (!isdigit(ch))) ch = getchar();
    	if(ch == '-') w = -1, ch = getchar();
    	while(isdigit(ch)) data = data * 10 + (ch ^ 48), ch = getchar();
    	return data * w;
    }
    
    const int maxn(3e6 + 10), g(3), Mod(998244353), phi(Mod - 1);
    inline int fastpow(int x, int y)
    {
    	int ans = 1;
    	while(y)
    	{
    		if(y & 1) ans = 1ll * ans * x % Mod;
    		x = 1ll * x * x % Mod, y >>= 1;
    	}
    	return ans;
    }
    
    int n, m, r[maxn], P, a[maxn], b[maxn];
    template<int opt> void FFT(int *p)
    {
    	for(RG int i = 0; i < n; i++) if(i < r[i]) std::swap(p[i], p[r[i]]);
    	for(RG int i = 1; i < n; i <<= 1)
    	{
    		int rot = fastpow(g, phi / (i << 1));
    		for(RG int j = 0; j < n; j += (i << 1))
    		{
    			int w = 1;
    			for(RG int k = 0; k < i; ++k, w = 1ll * w * rot % Mod)
    			{
    				int x = p[j + k], y = 1ll * w * p[i + j + k] % Mod;
    				p[j + k] = (x + y) % Mod, p[i + j + k] = (x - y + Mod) % Mod;
    			}
    		}
    	}
    	if(opt == -1) std::reverse(p + 1, p + n);
    }
    
    int main()
    {
    #ifndef ONLINE_JUDGE
    	file(cpp);
    #endif
    	n = read(), m = read();
    	for(RG int i = 0; i <= n; i++) a[i] = read();
    	for(RG int i = 0; i <= m; i++) b[i] = read();
    	for(m += n, n = 1; n <= m; n <<= 1, ++P);
    	for(RG int i = 0; i < n; i++)
    		r[i] = (r[i >> 1] >> 1) | ((i & 1) << (P - 1));
    	FFT<1>(a), FFT<1>(b);
    	for(RG int i = 0; i < n; i++) a[i] = 1ll * a[i] * b[i] % Mod;
    	FFT<-1>(a);
    	int inv = fastpow(n, Mod - 2);
    	for(RG int i = 0; i <= m; i++) printf("%lld ", 1ll * a[i] * inv % Mod);
    	return 0;
    }
    
  • 相关阅读:
    BUUCTF-RE-frimware
    BUUCTF-RE-pyre
    BUUCTF-RE-红帽2019easyRE
    BUUCTF-RE-Youngter-drive
    BUUCTF-RE-LuckGuy
    BUUCTF-RE-简单注册器
    BUUCTF-RE-8086
    BUUCTF-RE-CrackRTF
    PWN学习 ---- pwnable ----input
    linux 远程文件传输
  • 原文地址:https://www.cnblogs.com/cj-xxz/p/10173161.html
Copyright © 2011-2022 走看看