题面
题解
要求的是
[sum_{i=1}^nsum_{j=1}^na_ia_jb_{i,j} - sum_{i=1}^na_ic_i
]
可以看出这是一个最大权闭合子图问题
代码
#include<cstdio>
#include<cstring>
#include<cctype>
#include<algorithm>
#define RG register
#define file(x) freopen(#x".in", "r", stdin);freopen(#x".out", "w", stdout);
#define clear(x, y) memset(x, y, sizeof(x))
inline int read()
{
int data = 0, w = 1; char ch = getchar();
while(ch != '-' && (!isdigit(ch))) ch = getchar();
if(ch == '-') w = -1, ch = getchar();
while(isdigit(ch)) data = data * 10 + (ch ^ 48), ch = getchar();
return data * w;
}
const int N(510), maxn(3000010), INF(0x3f3f3f3f);
struct edge { int next, to, cap; } e[maxn << 1];
int head[maxn], e_num = -1, n, q[maxn], tail, lev[maxn], cur[maxn];
int S, T, id_b[N][N], id_c[N], idcnt, ans;
inline void add_edge(int from, int to, int cap)
{
e[++e_num] = (edge) {head[from], to, cap}; head[from] = e_num;
e[++e_num] = (edge) {head[to], from, cap}; head[to] = e_num;
}
int bfs()
{
clear(lev, 0); q[tail = lev[S] = 1] = S;
for(RG int i = 1; i <= tail; i++)
{
int x = q[i];
for(RG int j = head[x]; ~j; j = e[j].next)
{
int to = e[j].to; if(lev[to] || (!e[j].cap)) continue;
q[++tail] = to, lev[to] = lev[x] + 1;
}
}
return lev[T];
}
int dfs(int x, int f)
{
if(x == T || (!f)) return f;
int ans = 0, cap;
for(RG int &i = cur[x]; ~i; i = e[i].next)
{
int to = e[i].to;
if(e[i].cap && lev[to] == lev[x] + 1)
{
cap = dfs(to, std::min(f - ans, e[i].cap));
e[i].cap -= cap, e[i ^ 1].cap += cap, ans += cap;
if(ans == f) break;
}
}
return ans;
}
inline int Dinic()
{
int ans = 0;
while(bfs())
{
for(RG int i = S; i <= T; i++) cur[i] = head[i];
ans += dfs(S, INF);
}
return ans;
}
int main()
{
#ifndef ONLINE_JUDGE
file(cpp);
#endif
clear(head, -1); n = read(); S = ++idcnt;
for(RG int i = 1; i <= n; i++)
for(RG int j = 1; j <= n; j++)
id_b[i][j] = ++idcnt;
for(RG int i = 1; i <= n; i++) id_c[i] = ++idcnt;
T = ++idcnt;
for(RG int i = 1, x; i <= n; i++)
for(RG int j = 1; j <= n; j++)
ans += (x = read()), add_edge(S, id_b[i][j], x),
add_edge(id_b[i][j], id_c[i], INF),
add_edge(id_b[i][j], id_c[j], INF);
for(RG int i = 1, x; i <= n; i++)
x = read(), add_edge(id_c[i], T, x);
printf("%d
", ans - Dinic());
return 0;
}