zoukankan      html  css  js  c++  java
  • [JSOI2011]Apple的美食

    题面

    题解

    (A(l, r) = sum_{i=l}^r a_i, B(l, r) = sum_{i=l}^r b_i)

    所求就是 (frac{2A(l, r)}{A(1, n) + B(l, r)})

    60 pts

    分数规划,二分答案后有:(2A(l, r) - mathrm{mid} (A(l, r) + B(l, r)) geq mathrm{mid} * A(1, n))

    (c_i = 2a_i - mathrm{mid}(a_i + b_i)),跑一个最大子段和即可。

    时间复杂度 (mathcal O(Tnlog n))

    100 pts

    发现这两个序列 (a, b) 有周期且周期不超过 (m)

    所以答案要么不包含一个完整的周期,要么包含。

    暴力枚举周期内的点,利用周期的性质计算答案。

    时间复杂度 (mathcal O(Tm^2))

    代码

    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    #define file(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
    
    inline int read()
    {
    	int data = 0, w = 1; char ch = getchar();
    	while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
    	if (ch == '-') w = -1, ch = getchar();
    	while (ch >= '0' && ch <= '9') data = data * 10 + (ch ^ 48), ch = getchar();
    	return data * w;
    }
    
    const int N(105);
    const double eps(1e-8);
    int n, a[N << 1], pos[N], sum[N], p1, p2, M, tP, tS;
    double ans;
    int Query(int *P, int t, int i)
    {
    	if (i <= 100) return P[i];
    	i -= 100 - t;
    	return (i / t) * (P[100] - P[100 - t]) + P[100 - t + (i % t)];
    }
    
    void GetAns(int l1, int r1, int l2, int r2)
    {
    	for (int i = l1; i <= r1; i++)
    		for (int j = std::max(i + 1, l2); j <= r2; j++)
    			ans = std::max(ans, 1. * (Query(pos, tP, j) - Query(pos, tP, i)) /
    					(Query(pos, tP, n) + Query(sum, tS, j) - Query(sum, tS, i)));
    }
    
    int main()
    {
    #ifndef ONLINE_JUDGE
    	file(cpp);
    #endif
    	while ((n = read()))
    	{
    		a[1] = read(), p1 = read(), p2 = read(), M = read(), ans = 0.;
    		for (int i = 2; i <= 200; i++) a[i] = (a[i - 1] * p1 + p2) % M;
    		for (int i = 1; i <= 100; i++)
    			sum[i] = (pos[i] = a[(i << 1) - 1]) + a[i << 1];
    		for (int i = 1; i < 60; i++)
    			if (pos[40] == pos[i + 40]) { tP = tS = i; break; }
    		for (int i = 1; i <= 100; i++)
    			pos[i] += pos[i - 1], sum[i] += sum[i - 1];
    		GetAns(0, std::min(100, n), 0, std::min(100, n));
    		GetAns(0, std::min(100, n), std::max(0, n - 100), n);
    		printf("%.6lf
    ", ans * 2);
    	}
    	return 0;
    }
    
  • 相关阅读:
    218. The Skyline Problem (LeetCode)
    并发编程-读书笔记
    Lock Free (无锁并发)
    最近公共祖先 LCA 递归非递归
    Node.js 开发指南-读书笔记
    [paper reading] C-MIL: Continuation Multiple Instance Learning for Weakly Supervised Object Detection CVPR2019
    开发者必备,超实用的PHP代码片段!
    二级菜单联动效果
    页面js框架
    我的java mvc
  • 原文地址:https://www.cnblogs.com/cj-xxz/p/12317571.html
Copyright © 2011-2022 走看看