zoukankan      html  css  js  c++  java
  • [CF535E] Tavas and Pashmaks

    题面

    题解

    我们可以尝试寻找临界值。枚举,那么令(frac{A}{a_i}+frac{B}{b_i}=frac{A}{a_j}+frac{B}{b_j}),如果这对(A,B)(i,j)取到最值,那么(i,j)有用。

    将每个型号看成平面上的点((frac1{a_i},frac1{b_i})),我们的问题变成了:给定任意(A,B),最小化(z=Ax+By)(x,y)即为点的坐标)。因为(A,B)为正实数,所以目标函数的斜率为负。于是,有用的点分布在该点集的左下凸包上。使用类似斜率优化的方法求出凸包即可。

    时间复杂度(O(nlogn))

    #include<cstdio>
    #include<cstring>
    #include<algorithm>
    #define RG register
    #define clear(x, y) memset(x, y, sizeof(x));
    
    inline int read()
    {
    	int data = 0, w = 1;
    	char ch = getchar();
    	while(ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
    	if(ch == '-') w = -1, ch = getchar();
    	while(ch >= '0' && ch <= '9') data = data * 10 + (ch ^ 48), ch = getchar();
    	return data*w;
    }
    
    const int maxn(3e5 + 10);
    int q[maxn], top, next[maxn], ok[maxn], n;
    struct point { int x, y, id; } p[maxn];
    double k[maxn];
    inline bool operator < (const point &lhs, const point &rhs)
    {
    	return lhs.x > rhs.x || (lhs.x == rhs.x && lhs.y > rhs.y);
    }
    
    inline double slope(const point &i, const point &j)
    {
    	return 1. * i.x * j.x * (j.y - i.y) / (1. * i.y * j.y * (j.x - i.x));
    }
    
    int main()
    {
    	n = read(); int minx, miny = 0;
    	for(RG int i = 1; i <= n; i++)
    	{
    		p[i] = (point) {read(), read(), i};
    		if(miny < p[i].y || (miny == p[i].y && minx < p[i].x))
    			minx = p[i].x, miny = p[i].y;
    	}
    
    	std::sort(p + 1, p + n + 1);
    	q[top = 1] = 1;
    	for(RG int i = 2; i <= n && minx <= p[i].x; i++)
    	{
    		if(p[q[top]].x == p[i].x)
    		{
    			if(p[q[top]].y == p[i].y)
    				next[p[i].id] = next[p[q[top]].id], next[p[q[top]].id] = p[i].id;
    			continue;
    		}
    
    		while(top > 1 && k[top] > slope(p[q[top]], p[i])) --top;
    		q[++top] = i; k[top] = slope(p[q[top - 1]], p[i]);
    	}
    
    	for(RG int i = top; i; --i)
    		for(RG int j = p[q[i]].id; j; j = next[j]) ok[j] = 1;
    	for(RG int i = 1; i <= n; i++) if(ok[i]) printf("%d ", i);
    	return 0;
    }
    
  • 相关阅读:
    POJ 2752 Seek the Name, Seek the Fame
    POJ 2406 Power Strings
    对闭包的理解(closure)
    HDU
    Python字典遍历的几种方法
    面向对象的六大原则
    Android添加代码检查权限
    Android请求网络权限
    android广播接收器BroadcastReceiver
    Android中SQLite下 Cursor的使用。
  • 原文地址:https://www.cnblogs.com/cj-xxz/p/9817098.html
Copyright © 2011-2022 走看看