Problem
Description
You are given n rods of length 1, 2, . . . , n. You have to pick any 3 of them and build a triangle. How many distinct triangles can you make? Note that, two triangles will be considered different if they have at least 1 pair of arms with different length.
Input
The input for each case will have only a single positive integer n (3 ≤ n ≤ 1000000). The end of ### Input
will be indicated by a case with n < 3. This case should not be processed.
Output
For each test case, print the number of distinct triangles you can make.
Sample Input
5
8
0
Sample Output
3
22
Solution
思路
显然对于每一个三角形,设其三边为(x,y,z(最长边)),则有(x+y>z),(x-y<z),所以(z-y<x<z).
然后y的取值范围为1~n-1,那么此时可以得到,当y=1时,x无解;当y=2时,x有1个解;当y=z-1时,x有z-2个解
所以递推式就很容易求
Code
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<iostream>
#include<algorithm>
#include<queue>
#define ll long long
#define re register
using namespace std;
inline int gi(){
int f=1,sum=0;char ch=getchar();
while(ch>'9' || ch<'0'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0' && ch<='9'){sum=sum*10+ch-'0';ch=getchar();}
return f*sum;
}
ll f[1000010];
int main(){
int j,k,n,m;
f[3]=0;
for(ll i=4;i<=1000000;i++)
f[i]=f[i-1]+((i-1)*(i-2)/2-(i-1)/2)/2;
while(scanf("%d",&n)==1 && n>=3)
printf("%lld
",f[n]);
return 0;
}