zoukankan      html  css  js  c++  java
  • POJ 2385 Apple Catching

    It is a little known fact that cows love apples. Farmer John has two apple trees (which are conveniently numbered 1 and 2) in his field, each full of apples. Bessie cannot reach the apples when they are on the tree, so she must wait for them to fall. However, she must catch them in the air since the apples bruise when they hit the ground (and no one wants to eat bruised apples). Bessie is a quick eater, so an apple she does catch is eaten in just a few seconds. 

    Each minute, one of the two apple trees drops an apple. Bessie, having much practice, can catch an apple if she is standing under a tree from which one falls. While Bessie can walk between the two trees quickly (in much less than a minute), she can stand under only one tree at any time. Moreover, cows do not get a lot of exercise, so she is not willing to walk back and forth between the trees endlessly (and thus misses some apples). 

    Apples fall (one each minute) for T (1 <= T <= 1,000) minutes. Bessie is willing to walk back and forth at most W (1 <= W <= 30) times. Given which tree will drop an apple each minute, determine the maximum number of apples which Bessie can catch. Bessie starts at tree 1.

    Input

    * Line 1: Two space separated integers: T and W 

    * Lines 2..T+1: 1 or 2: the tree that will drop an apple each minute.

    Output

    * Line 1: The maximum number of apples Bessie can catch without walking more than W times.

    Sample Input

    7 2
    2
    1
    1
    2
    2
    1
    1

    Sample Output

    6

    Hint

    INPUT DETAILS: 

    Seven apples fall - one from tree 2, then two in a row from tree 1, then two in a row from tree 2, then two in a row from tree 1. Bessie is willing to walk from one tree to the other twice. 

    OUTPUT DETAILS: 

    Bessie can catch six apples by staying under tree 1 until the first two have dropped, then moving to tree 2 for the next two, then returning back to tree 1 for the final two.
     

    设计状态dp[i][j]代表到I时间转换了j次的最大收益,那么状态显然可以由之前的状态转还是不转转移过来,注意加上一段区间的值可以用前缀和来优化。

     1 #include<cstdio>
     2 #include<cstdlib>
     3 #include<cstring>
     4 #include<iostream>
     5 #include<cmath>
     6 #include<algorithm>
     7 #include<vector>
     8 #include<stack>
     9 #include<queue>
    10 #include<map>
    11 #define RG register
    12 #define IL inline
    13 #define pi acos(-1.0)
    14 #define ll long long 
    15 using namespace std;
    16 int tree1[1005],tree2[1005];
    17 int dp[1005][35];
    18 int T,W;
    19 int main() {
    20   scanf("%d%d",&T,&W);
    21   for(int i=1;i<=T;i++){
    22     int type;
    23     scanf("%d",&type);
    24     if(type==1) tree1[i]=1;
    25     else tree2[i]=1;
    26     tree1[i]+=tree1[i-1];
    27     tree2[i]+=tree2[i-1];
    28   }
    29   for(int i=1;i<=T;i++)
    30     for(int j=0;j<i;j++){
    31       for(int w=0;w<=W;w++){
    32         if(w%2==0){
    33        dp[i][w]=max(dp[i][w],dp[j][w]+tree1[i]-tree1[j]);
    34        if(w+1<=W) dp[i][w+1]=max(dp[i][w+1],dp[j][w]+tree2[i]-tree2[j]);
    35     } else{
    36        dp[i][w]=max(dp[i][w],dp[j][w]+tree2[i]-tree2[j]);
    37        if(w+1<=W) dp[i][w+1]=max(dp[i][w+1],dp[j][w]+tree1[i]-tree1[j]);
    38     }
    39       }
    40     }
    41   int maxn=0;
    42   for(int i=0;i<=W;i++) maxn=max(maxn,dp[T][i]);
    43   cout<<maxn;
    44   return 0;
    45 }
  • 相关阅读:
    自定义CSS样式,在Hover的基础上面改成
    如何获取上次访问的url地址
    霍英东:大佬的黄昏 刚看的一篇文章很有感触,摘录一点东西
    把用户当傻子的终将被用户鄙视,—|—
    WinForm支持拖拽效果
    【EntityFramework系列教程五,翻译】在ASP.NET MVC程序中借助EntityFramework读取相关数据
    关于“验证码的制作”的一些补充
    【EntityFramework系列教程六,翻译】在ASP.NET MVC程序中使用EntityFramework对相关数据进行更新
    【EntityFramework系列教程四,翻译】为ASP.NET MVC程序创建更为复杂的数据模型
    【EntityFramework系列教程三,翻译】在ASP.NET MVC程序中使用EntityFramework对数据进行排序、过滤筛选以及实现分页
  • 原文地址:https://www.cnblogs.com/cjoier-nfy/p/7436695.html
Copyright © 2011-2022 走看看