传送门
直接求连通的不好做,考虑容斥
设 (g_i) 表示至少有 (i) 个连通块的方案数,(f_i) 表示恰好有 (i) 个的
那么
[g_x=sum_{i=x}^{n}egin{Bmatrix}x \ iend{Bmatrix}f_iiff f_x=sum_{i=x}^{n}(-1)^{i-x}egin{bmatrix}x \ iend{bmatrix}g_i
]
那么
[f_1=sum_{i=1}^{n}(-1)^{i-1}(i-1)!g_i
]
求 (g)
考虑枚举点的拆分,相当于是不同的集合之没有边,这部分直接用线性基求出方案
# include <bits/stdc++.h>
using namespace std;
typedef long long ll;
int n = 1, graph[65][15][15], m, id[15];
char ch[2333];
ll fac[15], ans, bc[65], v;
void Dfs(int x, int f) {
register int i, j, k, tot, num;
if (x > n) {
memset(bc, 0, sizeof(bc)), num = 0;
for (i = 1; i <= m; ++i) {
for (v = tot = 0, j = 1; j <= n; ++j)
for (k = j + 1; k <= n; ++k)
if (id[j] != id[k]) v |= (ll)graph[i][j][k] << tot, ++tot;
for (j = 0; j < tot; ++j)
if (v >> j & 1) {
if (!bc[j]) {
bc[j] = v, ++num;
break;
}
v ^= bc[j];
}
}
ans += (ll)((f & 1) ? 1 : -1) * fac[f - 1] * (1ll << (m - num));
return;
}
for (i = 1; i <= f + 1; ++i) id[x] = i, Dfs(x + 1, max(i, f));
}
int main() {
register int i, j, k, len, cnt;
for (scanf("%d", &m), i = 1; i <= m; ++i) {
scanf(" %s", ch + 1), len = strlen(ch + 1);
while (n * (n - 1) / 2 < len) ++n;
for (cnt = 0, j = 1; j <= n; ++j)
for (k = j + 1; k <= n; ++k) graph[i][j][k] = ch[++cnt] - '0';
}
for (fac[0] = 1, i = 1; i <= n; ++i) fac[i] = fac[i - 1] * i;
Dfs(1, 0), printf("%lld
", ans);
return 0;
}