zoukankan      html  css  js  c++  java
  • BZOJ4675: 点对游戏

    传送门
    考虑每一对幸运点对的贡献,假设有 (v)
    一共可以选择 (x) 个点,总共 (n) 个点
    那么答案就是

    [v imesfrac{A_{n-2}^{x-2}x(x-1)}{A_{n}^{x}}=frac{v imes x(x-1)}{n(n-1)} ]

    统计点对个数就好了

    Q: 一道点分治入门题目为什么要写长链剖分
    A: 因为太久没有写过了有点忘了...

    # include <bits/stdc++.h>
    using namespace std;
    typedef long long ll;
    
    const int maxn(1e5 + 5);
    
    int first[maxn], cnt, n, m, lucky[20], tmp[maxn], *id, *f[maxn], son[maxn], len[maxn];
    ll ans;
    double ret;
    
    struct Edge {
    	int to, next;
    } edge[maxn];
    
    inline void Add(int u, int v) {
    	edge[cnt] = (Edge){v, first[u]}, first[u] = cnt++;
    	edge[cnt] = (Edge){u, first[v]}, first[v] = cnt++;
    }
    
    void Dfs1(int u, int ff) {
    	int e, v;
    	for (e = first[u]; ~e; e = edge[e].next)
    		if ((v = edge[e].to) ^ ff) Dfs1(v, u), son[u] = len[v] > len[son[u]] ? v : son[u];
    	len[u] = len[son[u]] + 1;
    }
    
    void Dfs2(int u, int ff) {
    	int e, v, i, j;
    	f[u][0] = 1;
    	if (son[u]) f[son[u]] = f[u] + 1, Dfs2(son[u], u);
    	for (i = 1; i <= m; ++i) if (lucky[i] < len[u]) ans += f[u][lucky[i]];
    	for (e = first[u]; ~e; e = edge[e].next)
    		if (((v = edge[e].to) ^ ff) && (v ^ son[u])) {
    			f[v] = id, id += len[v];
    			Dfs2(v, u);
    			for (i = 1; i <= m; ++i)
    				for (j = 0; j < len[v] && j < lucky[i]; ++j)
    					if (lucky[i] - j - 1 < len[u]) ans += (ll)f[u][lucky[i] - j - 1] * f[v][j];
    			for (i = 1; i <= len[v]; ++i) f[u][i] += f[v][i - 1];
    		}
    }
    
    int main() {
    	int i, n1, n2, n3, u, v;
    	memset(first, -1, sizeof(first));
    	scanf("%d%d", &n, &m);
    	for (i = 1; i <= m; ++i) scanf("%d", &lucky[i]);
    	n1 = 0, n2 = 0, n3 = 0;
    	for (i = 1; i <= n; ++i)
    		if (i % 3 == 1) ++n1;
    		else if (i % 3 == 2) ++n2;
    		else ++n3;
    	for (i = 1; i < n; ++i) scanf("%d%d", &u, &v), Add(u, v);
    	Dfs1(1, 0), f[1] = id = tmp, id += len[1], Dfs2(1, 0);
    	ret = 1.0 * ans / (1.0 * (n - 1) * n);
    	printf("%.2lf
    %.2lf
    %.2lf
    ", ret * n1 * (n1 - 1), ret * n2 * (n2 - 1), ret * n3 * (n3 - 1));
    	return 0;
    }
    
  • 相关阅读:
    TCP/IP协议栈与数据包封装+TCP与UDP区别
    MySQL数据库优化总结
    MySQL存储引擎,锁,优化简述
    java实现常见查找算法
    Java的几种常见排序算法
    UML类图学习
    高性能的RTC服务器OpenFire
    常用的设计模式
    Swing JInternalFrame的使用
    Qt 模态与非模态
  • 原文地址:https://www.cnblogs.com/cjoieryl/p/10280571.html
Copyright © 2011-2022 走看看