zoukankan      html  css  js  c++  java
  • 【HNOI2011】数学作业

    分段矩乘即可

    # include <stdio.h>
    # include <stdlib.h>
    # include <iostream>
    # include <string.h>
    # define ll long long
    # define RG register
    # define IL inline
    # define UN unsigned
    # define mem(a, b) memset(a, b, sizeof(a))
    # define min(a, b) ((a) < (b)) ? (a) : (b)
    # define max(a, b) ((a) > (b)) ? (a) : (b)
    using namespace std;
    
    ll m;
    
    struct Matrix{
        ll a[3][3];
        IL void Clear(){mem(a, 0);}
        IL void First(){a[0][0] = a[1][1] = a[2][2] = 1;}
        IL Matrix operator *(Matrix &B){
            RG Matrix C; C.Clear();
            for(RG int i = 0; i < 3; i++)
                for(RG int j = 0; j < 3; j++)
                    for(RG int k = 0; k < 3; k++){
                        C.a[i][j] += (a[i][k] * B.a[k][j]) % m;
                        C.a[i][j] %= m;
                    }
            return C;
        }
    } S, T[19];
    
    IL ll Get(){
        RG char c = '!'; RG ll z = 1, num = 0;
        while(c != '-' && (c < '0' || c > '9'))
            c = getchar();
        if(c == '-')
            z = -1, c = getchar();
        while(c >= '0' && c <= '9')
            num = num * 10 + c - '0', c = getchar();
        return num * z;
    }
    
    IL void Pow(RG ll n, RG int x){
        while(n){
            if(n & 1) T[x] = T[x] * S;
            S = S * S;
            n >>= 1;
        }
    }
    
    int main(){
        RG ll n = Get();
        RG UN ll t = n;
        m = Get();
        RG int k = 0;
        while(t) t /= 10, k++;
        t = 1;
        for(RG int i = 1; i < k; i++){
            S.Clear();
            t *= 10; S.a[0][0] = t % m; T[i].First();
            S.a[1][0] = S.a[1][1] = S.a[2][0] = S.a[2][1] = S.a[2][2] = 1;
            Pow(t - t / 10, i);
        }
        S.Clear();
        t *= 10; S.a[0][0] = t % m; T[k].First();
        S.a[1][0] = S.a[1][1] = S.a[2][0] = S.a[2][1] = S.a[2][2] = 1;
        Pow(n - t / 10 + 1, k);
        S.Clear(); S.First();
        for(RG int i = 1; i <= k; i++)
            S = S * T[i];
        printf("%d
    ", S.a[2][0] % m);
        return 0;
    }
  • 相关阅读:
    CF687D Dividing Kingdom II
    图论——EK算法
    P6082 [JSOI2015]salesman
    联合权值——树上问题2014noip
    P2071 座位安排——二分图最大匹配
    匈牙利优化时间戳的正确性
    P1541 乌龟棋——线性动规
    P1858 多人背包
    P3558 [POI2013]BAJ-Bytecomputer——线性动归
    P2303 [SDOI2012] Longge 的问题
  • 原文地址:https://www.cnblogs.com/cjoieryl/p/8206399.html
Copyright © 2011-2022 走看看