zoukankan      html  css  js  c++  java
  • [THUWC 2017]在美妙的数学王国中畅游

    bzoj5020

    $$答案误差只要小于 10^{-7}$$

    题解

    Taylor展开式:

    [若f(x)的n阶导数在[a, b]内连续,则f(x)在x_{0}in[a, b]可表示为 ]

    [f(x)=sum_{i=0}^{n} frac{ f^{(n)}(x_{0})(x-x_{0})^{i} }{i!} + Theta((x-x_{0})^{n}) ]

    [其中f^{(n)}表示函数f的n阶导数,Theta((x-x_{0})^{n})为误差 ]

    [对于这道题,令x_{0}=0,求大约12阶导数即可保证误差小于10^{-7} ]

    用Taylor展开式可以直接把路径上的函数合并
    直接开12变量个记录每一阶的导数,用LCT维护,统计答案用Taylor展开式计算

    # include <bits/stdc++.h>
    # define RG register
    # define IL inline
    # define Fill(a, b) memset(a, b, sizeof(a))
    using namespace std;
    typedef long long ll;
    const int _(400010);
    const double E = pow(2, 1.0 / log(2));
    
    IL ll Read(){
    	RG char c = getchar(); RG ll x = 0, z = 1;
    	for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
    	for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
    	return x * z;
    }
    
    int n, m;
    
    namespace LCT{
    	int ch[2][_], fa[_], rev[_], S[_];
    	double w[17][_], sum[17][_];
    
    	IL bool Son(RG int x){  return ch[1][fa[x]] == x;  }
    
    	IL bool Isroot(RG int x){  return ch[0][fa[x]] != x && ch[1][fa[x]] != x;  }
    
    	IL void Update(RG int x){  for(RG int i = 0; i < 16; ++i) sum[i][x] = sum[i][ch[0][x]] + sum[i][ch[1][x]] + w[i][x];  }
    
    	IL void Pushdown(RG int x){  if(!rev[x]) return; rev[x] ^= 1; rev[ch[0][x]] ^= 1; rev[ch[1][x]] ^= 1; swap(ch[0][x], ch[1][x]);  }
    
    	IL void Rot(RG int x){
    		RG int y = fa[x], z = fa[y], c = Son(x);
    		if(!Isroot(y)) ch[Son(y)][z] = x; fa[x] = z;
    		ch[c][y] = ch[!c][x]; fa[ch[c][y]] = y;
    		ch[!c][x] = y; fa[y] = x; Update(y);
    	}
    	
    	IL void Splay(RG int x){
    		RG int top = 0; S[++top] = x;
    		for(RG int i = x; !Isroot(i); i = fa[i]) S[++top] = fa[i];
    		while(top) Pushdown(S[top--]);
    		for(RG int y = fa[x]; !Isroot(x); Rot(x), y = fa[x])
    			if(!Isroot(y)) Son(x) ^ Son(y) ? Rot(x) : Rot(y);
    		Update(x);
    	}
    
    	IL void Access(RG int x){  for(RG int y = 0; x; y = x, x = fa[x]) Splay(x), ch[1][x] = y, Update(x);  }
    
    	IL int Findroot(RG int x){  Access(x); Splay(x); while(ch[0][x]) x = ch[0][x]; return x;  }
    
    	IL void Makeroot(RG int x){  Access(x); Splay(x); rev[x] ^= 1;  }
    
    	IL void Split(RG int x, RG int y){  Makeroot(x); Access(y); Splay(y);  }
    	
    	IL void Link(RG int x, RG int y){  Makeroot(x); fa[x] = y;  }
    
    	IL void Cut(RG int x, RG int y){  Split(x, y); ch[0][y] = fa[x] = 0;  }
    
    	IL double Query(RG int x, RG int y, RG double xx){
    		Split(x, y);
    		RG double ans = sum[0][y], fac = 1, xxx = 1;
    		for(RG int i = 1; i < 16; i++) fac *= i, xxx *= xx, ans += sum[i][y] / fac * xxx;
    		return ans;
    	}
    
    	IL void Calc(RG int x, RG int f, RG double a, RG double b){
    		for(RG int i = 0; i < 16; ++i) w[i][x] = 0;
    		if(f == 3) w[0][x] = b, w[1][x] = a;
    		else if(f == 1){
    			RG double aa = 1; w[0][x] = sin(b);
    			for(RG int i = 1; i < 16; ++i){
    				aa *= a;
    				if(i % 4 == 1) w[i][x] = aa * cos(b);
    				else if(i % 4 == 2) w[i][x] = -aa * sin(b);
    				else if(i % 4 == 3) w[i][x] = -aa * cos(b);
    				else w[i][x] = aa * sin(b);
    			}
    		}
    		else{
    		    w[0][x] = pow(E, b);
    			for(RG int i = 1; i < 16; ++i) w[i][x] = w[i - 1][x] * a;
    		}
    	}
    	
    	IL void Work(){
    		RG char c; RG int u, v, p, f; RG double x, a, b;
    		for(RG int i = 1; i <= n; ++i) f = Read(), scanf("%lf%lf", &a, &b), Calc(i, f, a, b);
    		while(m--){
    			scanf(" %c", &c);
    			if(c == 'a') u = Read() + 1, v = Read() + 1, Link(u, v);
    			else if(c == 'd') u = Read() + 1, v = Read() + 1, Cut(u, v);
    			else if(c == 'm') p = Read() + 1, f = Read(), scanf("%lf%lf", &a, &b), Calc(p, f, a, b), Splay(p);
    			else{
    				u = Read() + 1; v = Read() + 1; scanf("%lf", &x);
    				if(Findroot(u) != Findroot(v)) puts("unreachable");
    				else printf("%.8e
    ", Query(u, v, x));
    			}
    		}
    	}
    }
    
    int main(RG int argc, RG char *argv[]){
    	n = Read(); m = Read(); Read();
    	LCT::Work();
    	return 0;
    }
    
    
  • 相关阅读:
    poi操作excel2007(读取、生成、编辑)
    poi API大全
    iText导出pdf、word、图片
    正则表达式判断是否是中国电信的号码
    正则表达式_判断金额是否为数字(且是2位有效数字)
    POI实现Excel2003插入多张图片
    java中BufferedReader 有什么用
    poi生成word2007及以上文件
    POI 详细介绍
    GDB之常见错误
  • 原文地址:https://www.cnblogs.com/cjoieryl/p/8206717.html
Copyright © 2011-2022 走看看