zoukankan      html  css  js  c++  java
  • 【UVA 11426】gcd之和 (改编)

    题面

    (sum_{i=1}^{n}sum_{j=1}^mgcd(i,j)mod998244353)
    (n,m<=10^7)

    Sol

    简单的一道莫比乌斯反演题

    (原式=sum_{d=1}^{n}d*sum_{i=1}^{lfloorfrac{n}{d} floor}sum_{j=1}^{lfloorfrac{m}{d} floor}[gcd(i, j)==1])
    (设f(i) = sum_{i=1}^{lfloorfrac{n}{d} floor}sum_{j=1}^{lfloorfrac{m}{d} floor}[gcd(i, j)==1])
    (g(i) = sum_{i|d} f(d) = lfloorfrac{lfloorfrac{n}{d} floor}{i} floorlfloorfrac{lfloorfrac{m}{d} floor}{j} floor)
    莫比乌斯反演求出f,用两个数论分块就好了

    # include <bits/stdc++.h>
    # define RG register
    # define IL inline
    # define Fill(a, b) memset(a, b, sizeof(a))
    using namespace std;
    typedef long long ll;
    const int _(1e7 + 1), MOD(998244353);
    
    IL ll Read(){
        char c = '%'; ll x = 0, z = 1;
        for(; c > '9' || c < '0'; c = getchar()) if(c == '-') z = -1;
        for(; c >= '0' && c <= '9'; c = getchar()) x = x * 10 + c - '0';
        return x * z;
    }
    
    int prime[_], mu[_], num, s[_];
    bool isprime[_];
    
    IL void Prepare(){
    	isprime[1] = 1; s[1] = mu[1] = 1;
    	for(RG int i = 2; i < _; ++i){
    		if(!isprime[i]) prime[++num] = i, mu[i] = -1;
    		for(RG int j = 1; j <= num && i * prime[j] < _; ++j){
    			isprime[i * prime[j]] = 1;
    			if(i % prime[j])  mu[i * prime[j]] = -mu[i];
    			else{  mu[i * prime[j]] = 0; break;	 }
    		}
    		(mu[i] += mu[i - 1]) %= MOD; s[i] = (s[i - 1] + i) % MOD;
    	}
    }
    
    IL int Calc(RG ll n, RG ll m){
    	RG ll f = 0, g;
    	for(RG ll i = 1, j; i <= n; i = j + 1){
    		j = min(n / (n / i), m / (m / i));
    		g = 1LL * (n / i) * (m / i) % MOD;
    		(f += 1LL * (mu[j] - mu[i - 1] + MOD) % MOD * g % MOD) %= MOD;
    	}
    	return f;
    }
    
    int main(RG int argc, RG char *argv[]){
    	Prepare();
    	RG int n = Read(), m = Read(); RG ll ans = 0;
    	if(n > m) swap(n, m);
    	for(RG ll d = 1, j; d <= n; d = j + 1){
    		j = min(n / (n / d), m / (m / d));
    		(ans += 1LL * (s[j] - s[d - 1] + MOD) % MOD * Calc(n / d, m / d) % MOD) %= MOD;
    	}
    	printf("%lld
    ", ans);
    	return 0;
    }
    
    
  • 相关阅读:
    序列化与反序列化
    进程与线程
    winform基础
    MD5加密
    Docker安装Nextcloud+collabora office+ocdownloader
    Docker安装MariaDB
    Docker 安装 Nginx
    Docker命令大全
    Docker之镜像操作
    Linux入门-Docker安装
  • 原文地址:https://www.cnblogs.com/cjoieryl/p/8260567.html
Copyright © 2011-2022 走看看