题面
Sol
考虑枚举长度i
与l,r无太大关系,只需要关心这len=r-l+1个数的放法。。
我们把len个数看成这么多个不同的盒子,i的长度看成相同的i个球
相当于把这i个球放到这些盒子里,可以重复放的方案数
也就是求可重组合,也就是组合数(C_{len-1}^{len+i-1})公式自己学去
就是要求(sum_{i=1}^{n}C_{len-1}^{len+i-1})补一个(C_{n}^{n})
由公式(C_{n+1}^{n+r+1}=sum_{i=0}^{r}C_{n}^{n+r})得
答案就是(C_{n}^{n+len}-C_{n}^{n}=C_{n}^{n+len}-1)
再用lucas定理就好了
# include <bits/stdc++.h>
# define RG register
# define IL inline
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(1e7 + 1), MOD(1e6 + 3);
IL ll Read(){
char c = '%'; ll x = 0, z = 1;
for(; c > '9' || c < '0'; c = getchar()) if(c == '-') z = -1;
for(; c >= '0' && c <= '9'; c = getchar()) x = x * 10 + c - '0';
return x * z;
}
int fac[MOD] = {1};
IL int Pow(RG ll x, RG ll y){
RG ll cnt = 1;
for(; y; y >>= 1, x = x * x % MOD) if(y & 1) cnt = cnt * x % MOD;
return cnt;
}
IL int C(RG ll n, RG ll m){
if(n < m) return 0;
return 1LL * fac[n] * Pow(fac[m], MOD - 2) % MOD * Pow(fac[n - m], MOD - 2) % MOD;
}
IL int Lucas(RG ll n, RG ll m){
if(n < m) return 0; if(!m) return 1;
return 1LL * Lucas(n / MOD, m / MOD) * C(n % MOD, m % MOD) % MOD;
}
int main(RG int argc, RG char *argv[]){
for(RG int i = 1; i < MOD; ++i) fac[i] = 1LL * fac[i - 1] * i % MOD;
for(RG int T = Read(), n, l, r, len; T; --T){
n = Read(); l = Read(); r = Read(); len = r - l + 1;
printf("%d
", (Lucas(n + len, len) - 1 + MOD) % MOD);
}
return 0;
}