zoukankan      html  css  js  c++  java
  • 线性规划费用流解法(Bzoj1061: [Noi2008]志愿者招募)

    题面

    传送门

    Sol

    线性规划费用流解法用与求解未知数为非负数的问题

    这道题可以列出一堆形如
    (x[i]+x[j]+x[k]+...>=a[p])
    的不等式
    我们强行给每个式子减去一个东西,使他变成这样
    (x[i]+x[j]+x[k]+...-y[p]==a[p])

    然后相邻两个式子差分一下
    把每个式子看成一个点
    那么这样后,在这个题中所有的未知数只会出现在一个方程中
    等式左边符号是正的向符号为负的方程连边,费用为代价,如果是补的未知数(y),那么费用为零
    右边的数是正的连(s),否则连(t)
    费用流出解

    # include <bits/stdc++.h>
    # define IL inline
    # define RG register
    # define Fill(a, b) memset(a, b, sizeof(a))
    using namespace std;
    typedef long long ll;
    
    IL int Input(){
    	RG int x = 0, z = 1; RG char c = getchar();
    	for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
    	for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
    	return x * z;
    }
    
    const int maxn(1005);
    const int inf(1e9);
    
    int n, m, first[maxn], cnt, ans, s, t;
    int dis[maxn], pre1[maxn], pre2[maxn], vis[maxn];
    queue <int> q;
    
    struct Edge{
    	int to, next, f, w;
    } edge[maxn * 25];
    
    IL void Add(RG int u, RG int v, RG int f, RG int w){
    	edge[cnt] = (Edge){v, first[u], f, w}, first[u] = cnt++;
    	edge[cnt] = (Edge){u, first[v], 0, -w}, first[v] = cnt++;
    }
    
    IL int Aug(){
    	for(RG int i = s; i <= t; ++i) dis[i] = inf;
    	q.push(s), dis[s] = 0, vis[s] = 1;
    	while(!q.empty()){
    		RG int u = q.front(); q.pop();
    		for(RG int e = first[u]; e != -1; e = edge[e].next){
    			RG int v = edge[e].to;
    			if(edge[e].f && dis[v] > dis[u] + edge[e].w){
    				dis[v] = dis[u] + edge[e].w;
    				pre1[v] = e, pre2[v] = u;
    				if(!vis[v]) q.push(v), vis[v] = 1;
    			}
    		}
    		vis[u] = 0;
    	}
    	if(dis[t] == inf) return 0;
    	RG int ret = inf;
    	for(RG int p = t; p; p = pre2[p]) ret = min(ret, edge[pre1[p]].f);
    	ans += ret * dis[t];
    	for(RG int p = t; p; p = pre2[p])
    		edge[pre1[p]].f -= ret, edge[pre1[p] ^ 1].f += ret;
    	return 1;
    }
    
    int main(){
    	n = Input(), m = Input();
    	s = 0, t = n + 2;
    	for(RG int i = s; i <= t; ++i) first[i] = -1;
    	RG int last = 0;
    	for(RG int i = 1; i <= n; ++i){
    		RG int v = Input();
    		if(v - last > 0) Add(s, i, v - last, 0);
    		else if(v - last < 0) Add(i, t, last - v, 0);
    		last = v, Add(i + 1, i, inf, 0);
    	}
    	Add(n + 1, t, last, 0);
    	for(RG int i = 1; i <= m; ++i){
    		RG int l = Input(), r = Input(), c = Input();
    		Add(l, r + 1, inf, c);
    	}
    	while(Aug());
    	printf("%d
    ", ans);
    	return 0;
    }
    
    
  • 相关阅读:
    前端3 浮动布局,固定定位,绝对定位,相对定位
    前端2 字体|文本属性样式, 高级选择器
    前端1.概念
    前端,基础选择器,嵌套关系.display属性,盒模型
    数据库之索引
    数据库之进阶(视图,事务,存储过程)
    数据库,多表数据
    数据库之表的使用
    数据的演化(数据仓库的发展史)
    HDFS退出安全模式
  • 原文地址:https://www.cnblogs.com/cjoieryl/p/9113924.html
Copyright © 2011-2022 走看看