zoukankan      html  css  js  c++  java
  • 仙人掌基础

    定义

    大概就是:连通图,每条边最多只属于一个环

    用处

    别人出的毒瘤
    出毒瘤题
    反正要学。。。

    习题

    仙人掌的最大独立集

    Bzoj4316: 小C的独立集

    做法

    没有环就是树(DP)
    碰到环就做一遍环上的(DP)就好了,枚举一下一个点是否选即可

    # include <bits/stdc++.h>
    # define IL inline
    # define RG register
    # define Fill(a, b) memset(a, b, sizeof(a))
    using namespace std;
    typedef long long ll;
    
    IL int Input(){
        RG int x = 0, z = 1; RG char c = getchar();
        for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
        for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
        return x * z;
    }
    
    const int maxn(2e5 + 5);
    
    int n, m, dfn[maxn], low[maxn], idx, fa[maxn], f[2][maxn], ans;
    
    struct Edge{
        int first[maxn], cnt, nxt[maxn], to[maxn];
    
        IL void Init(){
            cnt = 0, Fill(first, -1);
        }
    
        IL void Add(RG int u, RG int v){
            nxt[cnt] = first[u], to[cnt] = v, first[u] = cnt++;
        }
    } e1;
    
    IL void Solve(RG int x, RG int u){
        RG int f0 = f[0][x], f1 = max(f[1][x], f[0][x]);
        for(RG int i = fa[x]; i != u; i = fa[i]){
            RG int tmp = f0;
            f0 = f1 + f[0][i], f1 = max(f0, tmp + max(f[0][i], f[1][i]));
        }
        f[0][u] += max(f1, f0), f0 = f1 = f[0][x];
        for(RG int i = fa[x]; i != u; i = fa[i]){
            RG int tmp = f0;
            f0 = f1 + f[0][i], f1 = max(f0, tmp + max(f[0][i], f[1][i]));
        }
        f[1][u] += f0;
    }
    
    IL void Tarjan(RG int u, RG int fe){
        dfn[u] = low[u] = ++idx, f[1][u] =1, f[0][u] = 0;
        for(RG int e = e1.first[u]; e != -1; e = e1.nxt[e]){
            RG int v = e1.to[e];
    		if(e == fe) continue;
            if(!dfn[v]) fa[v] = u, Tarjan(v, e ^ 1), low[u] = min(low[u], low[v]);
            else low[u] = min(low[u], dfn[v]);
            if(low[v] > dfn[u]) f[1][u] += f[0][v], f[0][u] += max(f[0][v], f[1][v]);
        }
        for(RG int e = e1.first[u]; e != -1; e = e1.nxt[e])
            if(fa[e1.to[e]] != u && dfn[e1.to[e]] > dfn[u]) Solve(e1.to[e], u);
    }
    
    int main(){
        e1.Init(), n = Input(), m = Input();
        for(RG int i = 1; i <= m; ++i){
            RG int u = Input(), v = Input();
            e1.Add(u, v), e1.Add(v, u);
        }
        for(RG int i = 1; i <= n; ++i)
            if(!dfn[i]) Tarjan(i, -1), ans += max(f[0][i], f[1][i]);
        printf("%d
    ", ans);
        return 0;
    }
    

    仙人掌的直径

    Bzoj1023: [SHOI2008]cactus仙人掌图

    做法

    还是没有环的时候树(DP)
    有环的时候考虑环的合并
    每次只考虑一半的环,这样就不用考虑走哪边
    然后写一个单调队列
    每个点入队两次,第二次时候给他加上环长
    每次弹队列头,弹到只有一半为止

    # include <bits/stdc++.h>
    # define IL inline
    # define RG register
    # define Fill(a, b) memset(a, b, sizeof(a))
    using namespace std;
    typedef long long ll;
    
    IL int Input(){
    	RG int x = 0, z = 1; RG char c = getchar();
    	for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
    	for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
    	return x * z;
    }
    
    const int maxn(2e5 + 5);
    
    int n, m, dfn[maxn], low[maxn], idx, fa[maxn], f[maxn], ans, deep[maxn], p[maxn], q[maxn];
    
    struct Edge{
    	int first[maxn], cnt, nxt[maxn], to[maxn];
    
    	IL void Init(){
    		cnt = 0, Fill(first, -1);
    	}
    
    	IL void Add(RG int u, RG int v){
    		nxt[cnt] = first[u], to[cnt] = v, first[u] = cnt++;
    	}
    } e1;
    
    IL void Solve(RG int x, RG int u){
    	RG int len = 0, l = 0, r = -1;
    	for(RG int i = x; i != u; i = fa[i]) p[++len] = i;
    	p[++len] = u, reverse(p + 1, p + len + 1);
    	for(RG int i = 1; i <= len; ++i) p[len + i] = p[i];
    	RG int half = len >> 1; len += len;
    	for(RG int i = 1; i <= len; ++i){
    		while(l <= r && i - q[l] > half) ++l;
    		if(l <= r) ans = max(ans, f[p[i]] + f[p[q[l]]] + i - q[l]);
    		while(l <= r && f[p[i]] - i > f[p[q[r]]] - q[r]) --r;
    		q[++r] = i;
    	}
    	for(RG int i = x; i != u; i = fa[i])
    		f[u] = max(f[u], f[i] + min(deep[i] - deep[u], deep[x] - deep[i] + 1));
    }
    
    IL void Tarjan(RG int u, RG int fe){
    	dfn[u] = low[u] = ++idx;
    	for(RG int e = e1.first[u]; e != -1; e = e1.nxt[e]){
    		RG int v = e1.to[e];
    		if(e == fe) continue;
    		if(!dfn[v]){
    			fa[v] = u, deep[v] = deep[u] + 1;
    			Tarjan(v, e ^ 1), low[u] = min(low[u], low[v]);
    		}
    		else low[u] = min(low[u], dfn[v]);
    		if(low[v] > dfn[u]){
    			ans = max(ans, f[u] + f[v] + 1);
    			f[u] = max(f[u], f[v] + 1);
    		}
    	}
    	for(RG int e = e1.first[u]; e != -1; e = e1.nxt[e])
    		if(fa[e1.to[e]] != u && dfn[e1.to[e]] > dfn[u])
    			Solve(e1.to[e], u);
    }
    
    int main(){
    	e1.Init(), n = Input(), m = Input();
    	for(RG int i = 1, a, b, l; i <= m; ++i)
    		for(l = Input() - 1, a = Input(); l; --l)
    			b = Input(), e1.Add(a, b), e1.Add(b, a), a = b;
    	Tarjan(1, -1);
    	printf("%d
    ", ans);
    	return 0;
    }
    

    仙人掌最短路

    Bzoj2125: 最短路

    做法

    首先你得会圆方树
    然后树上((u, v))边权为跟到(u,v)的最短路之差
    每次倍增跳到(lca),如果(lca)为圆点,那么就是边权和
    否则为方点,判断两个点跳到(lca)前的最后一个点是否在一个环中
    若不在,答案就是边权和
    否则,计算这两个点跳到(lca)前的最后一个点之间的最短路,算上这个的值就是答案

    # include <bits/stdc++.h>
    # define IL inline
    # define RG register
    # define Fill(a, b) memset(a, b, sizeof(a))
    using namespace std;
    typedef long long ll;
    
    IL int Input(){
    	RG int x = 0, z = 1; RG char c = getchar();
    	for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
    	for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
    	return x * z;
    }
    
    const int maxn(4e4 + 5);
    const ll inf(1e18);
    
    int n, m, dfn[maxn], low[maxn], idx, fa[20][maxn];
    int sta[maxn], top, tot, bel[maxn], vis[maxn], deep[maxn];
    ll dis[maxn], len[maxn], d[maxn];
    queue <int> q;
    
    struct Edge{
    	int first[maxn], cnt, nxt[maxn], to[maxn], w[maxn];
    
    	IL void Init(){
    		cnt = 0, Fill(first, -1);
    	}
    
    	IL void Add(RG int u, RG int v, RG int ww){
    		nxt[cnt] = first[u], to[cnt] = v, w[cnt] = ww, first[u] = cnt++;
    	}
    } e1, e2;
    
    IL void Tarjan(RG int u){
    	dfn[u] = low[u] = ++idx, sta[++top] = u;
    	for(RG int e = e1.first[u]; e != -1; e = e1.nxt[e]){
    		RG int v = e1.to[e];
    		if(!dfn[v]){
    			d[v] = d[u] + e1.w[e];
    			Tarjan(v), low[u] = min(low[u], low[v]);
    			if(low[v] >= dfn[u]){
    				RG int x = sta[top]; ++tot;
    				for(RG int p = e1.first[x]; p != -1; p = e1.nxt[p])
    					if(e1.to[p] == u) len[tot] = d[x] + e1.w[p] - d[u];
    				do{
    					x = sta[top--], bel[x] = tot;
    					e2.Add(tot, x, dis[x] - dis[u]);
    					e2.Add(x, tot, dis[x] - dis[u]);
    				} while(x != v);
    				e2.Add(tot, u, 0), e2.Add(u, tot, 0);
    			}
    		}
    		else low[u] = min(low[u], dfn[v]);
    	}
    }
    
    IL void SPFA(){
    	for(RG int i = 1; i <= n; ++i) dis[i] = inf;
    	dis[1] = 0, vis[1] = 1, q.push(1);
    	while(!q.empty()){
    		RG int u = q.front(); q.pop();
    		for(RG int e = e1.first[u]; e != -1; e = e1.nxt[e]){
    			RG int v = e1.to[e], w = e1.w[e];
    			if(dis[u] + w < dis[v]){
    				dis[v] = dis[u] + w;
    				if(!vis[v]) vis[v] = 1, q.push(v);
    			}
    		}
    		vis[u] = 0;
    	}
    }
    
    IL void Dfs(RG int u, RG int ff){
    	for(RG int e = e2.first[u]; e != -1; e = e2.nxt[e]){
    		RG int v = e2.to[e];
    		if(v != ff) fa[0][v] = u, deep[v] = deep[u] + 1, Dfs(v, u);
    	}
    }
    
    IL ll Query(RG int u, RG int v){
    	RG int x = u, y = v;
    	if(deep[y] > deep[x]) swap(x, y);
    	for(RG int j = 15; ~j; --j) if(deep[fa[j][x]] >= deep[y]) x = fa[j][x];
    	if(x == y) return dis[u] + dis[v] - dis[x] * 2;
    	for(RG int j = 15; ~j; --j) if(fa[j][x] != fa[j][y]) x = fa[j][x], y = fa[j][y];
    	if(fa[0][x] <= n || bel[x] != bel[y]) return dis[u] + dis[v] - dis[fa[0][x]] * 2;
    	RG ll ff = fa[1][x], mind = abs(d[x] - d[y]);
    	mind = min(mind, len[bel[x]] - mind);
    	return dis[u] + dis[v] - dis[x] - dis[y] + mind;
    }
    
    int main(){
    	e1.Init(), e2.Init();
    	tot = n = Input(), m = Input();
    	RG int t = Input();
    	for(RG int i = 1; i <= m; ++i){
    		RG int u = Input(), v = Input(), w = Input();
    		e1.Add(u, v, w), e1.Add(v, u, w);
    	}
    	SPFA(), Tarjan(1), Dfs(1, 0);
    	for(RG int j = 1; j <= 15; ++j)
    		for(RG int i = 1; i <= tot; ++i)
    			fa[j][i] = fa[j - 1][fa[j - 1][i]];
    	for(RG int i = 1; i <= t; ++i){
    		RG int u = Input(), v = Input();
    		printf("%lld
    ", Query(u, v));
    	}
    	return 0;
    }
    

    完结

    博主太菜了只会这些。。。

  • 相关阅读:
    Webpack4 入门手册(共 18 章)下
    npm(Node Package Manager)
    C#(99):C# 5.0 新特性(.NET Framework 4.5 与 Visual Studio 2012 )
    C#(99):四、Async和Await使异步编程更简单
    C#(99):三、.NET 4.0基于任务的异步模式(TAP),推荐使用
    C#(99):二、.NET 2.0基于事件的异步编程模式(EAP)
    C#(99):一、.NET 1.0 异步编程模型(APM)
    VS中的代码段功能
    VS在C#类文件头部添加文件注释的方法
    C#(99):C# 语言历史版本特性(C# 1.0到C# 8.0汇总)
  • 原文地址:https://www.cnblogs.com/cjoieryl/p/9116001.html
Copyright © 2011-2022 走看看