题意
给定一个字符串 (S)
求所有的 (S[i,n-i+1]) 的 (border) 长度(最长的前缀等于后缀),要求长度是奇数
(nle 10^6)
Sol
首先发现每次求的串都是原串去掉前后 (i-1) 位得到的串
一个套路,把串翻折,又因为 (border) 长度可能大于一半,所以我们把串倍长后翻折
也就是翻转过来隔空插入在一起
例如:
串 (bcabcabcabcabca)
翻转后 (acbacbacbacbacb)
隔一个插入在一起 (baccabbaccabbaccabbaccabbaccab)
那么也就是求这个串的以某个位置的开始的最长回文串
又因为得到的这个串本身就是回文串,所以并不用翻转过来,直接求以某个位置的结束的最长回文串就好了
比如 (baccab) 就是 (S[1,3]) 和 (S[13,15])
回文树就好了
注意到每次都要跳 (fail) 链跳到满足要求的位置,而每次都跳很耗时
如果之后跳到之前跳到过的点,就可以直接跳到之前跳到的对答案有贡献的点上
再继续跳
并查集维护一下就好了
# include <bits/stdc++.h>
# define IL inline
# define RG register
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
IL int Input(){
RG int x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
}
const int maxn(2e6 + 5);
int n, last, tot, anc[maxn], id[maxn];
int len[maxn], first[maxn], nxt[maxn], type[maxn], fa[maxn];
char s[maxn], str[maxn];
IL int Son(RG int u, RG int c){
for(RG int v = first[u]; v; v = nxt[v])
if(type[v] == c) return v;
return 0;
}
IL void Link(RG int u, RG int v, RG int c){
nxt[v] = first[u], first[u] = v, type[v] = c;
}
IL void Extend(RG int pos, RG int c){
RG int p = last;
while(s[pos - len[p] - 1] != s[pos]) p = fa[p];
if(!Son(p, c)){
RG int np = ++tot, q = fa[p];
while(s[pos - len[q] - 1] != s[pos]) q = fa[q];
len[np] = len[p] + 2, fa[np] = Son(q, c);
Link(p, np, c);
}
last = Son(p, c);
}
IL int Find(RG int x){
return anc[x] == x ? x : anc[x] = Find(anc[x]);
}
int main(){
Fill(type, -1), n = Input(), scanf(" %s", str + 1);
for(RG int t = 0, i = 1, j = n; j; ++i, --j)
s[++t] = str[i], s[++t] = str[j];
tot = 1, fa[0] = fa[1] = 1, len[1] = -1, n <<= 1, anc[0] = 1;
for(RG int i = 1; i <= n; ++i) Extend(i, s[i] - 'a'), id[i] = last;
for(RG int i = 0; i <= tot; ++i) anc[i] = i;
for(RG int i = 1, m = n >> 1, t = (m + 1) >> 1; i <= t; ++i){
RG int x = Find(id[n - ((i - 1) << 1)]);
while(x != 1 && ((len[x] >> 1) >= (m - ((i - 1) << 1)) || len[x] % 4 != 2)) x = anc[x] = Find(fa[anc[x]]);
printf("%d ", (len[x] % 4 == 2) ? (len[x] >> 1) : -1);
}
return 0;
}