zoukankan      html  css  js  c++  java
  • 图的遍历

    1. 深度优先

    #include<iostream>
    #include<vector>
    
    using namespace std;
    
    struct GrapNode {
        int label;
        vector<GrapNode*> neighbors;
        GrapNode(int x) : label(x) {};
    };
    
    void DFS_graph(GrapNode *node, int visit[]) {
        visit[node->label] = 1;        //标记已访问的顶点
        printf("%d ", node->label);
        for (int i = 0; i < node->neighbors.size(); i++) {
            if (visit[node->neighbors[i]->label] == 0) {    //访问相邻的且没有被访问的顶点
                DFS_graph(node->neighbors[i], visit);
            }
        }
    }
    
    int main() {
        const int MAX_N = 5;
        GrapNode *Graph[MAX_N];
    
        for (int i = 0; i < MAX_N; i++) {
            Graph[i] = new GrapNode(i);
        }
    
        Graph[0]->neighbors.push_back(Graph[4]);
        Graph[0]->neighbors.push_back(Graph[2]);
        Graph[1]->neighbors.push_back(Graph[0]);
        Graph[1]->neighbors.push_back(Graph[2]);
        Graph[2]->neighbors.push_back(Graph[3]);
        Graph[3]->neighbors.push_back(Graph[4]);
        Graph[4]->neighbors.push_back(Graph[3]);
    
        int visit[MAX_N] = { 0 };    //标记已被访问的顶点
    
        for (int i = 0; i < MAX_N; i++) {
            if (visit[i] == 0) {    //顶点没有被标记才会访问
                printf("From label(%d) : ", Graph[i]->label);
                DFS_graph(Graph[i], visit);
                printf("
    ");
            }
        }
    
        for (int i = 0; i < MAX_N; i++) {
            delete Graph[i];
        }
    
        return 0;
    }

    2.宽度优先

    #include<iostream>
    #include<vector>
    #include<queue>
    
    using namespace std;
    
    struct GraphNode {
        int label;
        vector<GraphNode*> neighbors;
        GraphNode(int x) : label(x) {};
    };
    
    //宽度优先
    void BFS_graph(GraphNode *node, int visit[]){
        queue<GraphNode*> Q;
        Q.push(node);
        visit[node->label] = 1;
        while (!Q.empty()) {
            GraphNode *node = Q.front();
            Q.pop();
            printf("%d ", node->label);
            for (int i = 0; i < node->neighbors.size(); i++) {
                if (visit[node->neighbors[i]->label] == 0) {
                    Q.push(node->neighbors[i]);
                    visit[node->neighbors[i]->label] = 1;
                }
            }
        }
    
    }
    
    int main() {
        const int MAX_N = 5;
        GraphNode *Graph[MAX_N];
    
        for (int i = 0; i < MAX_N; i++) {
            Graph[i] = new GraphNode(i);
        }
    
        Graph[0]->neighbors.push_back(Graph[4]);
        Graph[0]->neighbors.push_back(Graph[2]);
        Graph[1]->neighbors.push_back(Graph[0]);
        Graph[1]->neighbors.push_back(Graph[2]);
        Graph[2]->neighbors.push_back(Graph[3]);
        Graph[3]->neighbors.push_back(Graph[4]);
        Graph[4]->neighbors.push_back(Graph[3]);
    
        int visit[MAX_N] = { 0 };    //标记已被访问的顶点
    
        for (int i = 0; i < MAX_N; i++) {
            if (visit[i] == 0) {    //顶点没有被标记才会访问
                printf("From label(%d) : ", Graph[i]->label);
                BFS_graph(Graph[i], visit);
                printf("
    ");
            }
        }
    
        for (int i = 0; i < MAX_N; i++) {
            delete Graph[i];
        }
    
        return 0;
    }

    3. 判断有向图是否有环

    (1)在深度优先搜索中,如果正在搜索某一个顶点(还未退出该顶点的递归深度搜索),又回到了该顶点,即证明有环。

    (2)在宽度优先搜索时,只将入度为0的点添加至队列。当完成一个顶点的搜索(从队列中取出),它指向的所有顶点入度都减1,若此时某顶点入度为0则添加至队列,若完成宽度搜索后,所有的入度都为0,则图无环,否则有环。

  • 相关阅读:
    【LeetCode题解】844_比较含退格的字符串(Backspace-String-Compare)
    【LeetCode题解】25_k个一组翻转链表(Reverse-Nodes-in-k-Group)
    【LeetCode题解】24_两两交换链表中的节点(Swap-Nodes-in-Pairs)
    【LeetCode题解】347_前K个高频元素(Top-K-Frequent-Elements)
    【LeetCode题解】19_删除链表的倒数第N个节点(Remove-Nth-Node-From-End-of-List)
    【LeetCode题解】61_旋转链表(Rotate-List)
    IdentityServer4密码模式接入现有用户数据表
    .Net Core Swagger:Actions require an explicit HttpMethod binding for Swagger 2.0
    ABP缓存
    ABP仓储
  • 原文地址:https://www.cnblogs.com/cjsword/p/13047515.html
Copyright © 2011-2022 走看看