zoukankan      html  css  js  c++  java
  • HDU 3416 Marriage Match IV(最短路,网络流)

    题面

    Do not sincere non-interference。
    Like that show, now starvae also take part in a show, but it take place between city A and B. Starvae is in city A and girls are in city B. Every time starvae can get to city B and make a data with a girl he likes. But there are two problems with it, one is starvae must get to B within least time, it's said that he must take a shortest path. Other is no road can be taken more than once. While the city starvae passed away can been taken more than once.

    So, under a good RP, starvae may have many chances to get to city B. But he don't know how many chances at most he can make a data with the girl he likes . Could you help starvae?

    Input

    The first line is an integer T indicating the case number.(1<=T<=65)
    For each case,there are two integer n and m in the first line ( 2<=n<=1000, 0<=m<=100000 ) ,n is the number of the city and m is the number of the roads.

    Then follows m line ,each line have three integers a,b,c,(1<=a,b<=n,0<c<=1000)it means there is a road from a to b and it's distance is c, while there may have no road from b to a. There may have a road from a to a,but you can ignore it. If there are two roads from a to b, they are different.

    At last is a line with two integer A and B(1<=A,B<=N,A!=B), means the number of city A and city B.
    There may be some blank line between each case.

    Output

    Output a line with a integer, means the chances starvae can get at most.

    Sample Input

    3
    7 8
    1 2 1
    1 3 1
    2 4 1
    3 4 1
    4 5 1
    4 6 1
    5 7 1
    6 7 1
    1 7

    6 7
    1 2 1
    2 3 1
    1 3 3
    3 4 1
    3 5 1
    4 6 1
    5 6 1
    1 6

    2 2
    1 2 1
    1 2 2
    1 2

    Sample Output

    2
    1
    1

    题解

    题目大意:
    有一个人,特别爱撩妹,现在他在A城市,妹子们在B城市,每次他会从A城市沿着最短的路径到达B城市,并且和一个妹子约会,他每条路只能够走一次,问他最多能够和几个妹子约会?
    题解:
    首先要确定所有的最短路径上的路,直接用SPFA即可解决(怎么弄自己想)
    然后重新连接最短路上的路径,流量为1,求出源点到汇点的最大流即可

    #include<iostream>
    #include<cstdio>
    #include<cstdlib>
    #include<cstring>
    #include<cmath>
    #include<queue>
    #include<vector>
    #include<algorithm>
    using namespace std;
    #define MAX 2000
    #define MAXL 300100
    #define INF 1000000000
    inline int read()
    {
    	   int x=0,t=1;char ch=getchar();
    	   while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
    	   if(ch=='-'){t=-1;ch=getchar();}
    	   while(ch>='0'&&ch<='9'){x=x*10+ch-48;ch=getchar();}
    	   return x*t;
    }
    struct Line
    {
    	   int v,next,w;
    }e[MAXL],E[MAXL];
    struct edge
    {
    	   int v,next,w,fb;
    }ee[MAXL];
    int hh[MAX],cntt;
    int S,T,N,M;
    int h[MAX],cnt;
    int H[MAX];
    inline void Add(int u,int v,int w)
    {
    	   e[cnt]=(Line){v,h[u],w};
    	   E[cnt]=(Line){u,H[v],w};
    	   h[u]=H[v]=cnt++;
    }
    int dis1[MAX],dis2[MAX];
    bool vis[MAX];
    int level[MAX];
    void SPFA1()
    {
    	   for(int i=1;i<=N;++i)vis[i]=false;
    	   for(int i=1;i<=N;++i)dis1[i]=INF;
    	   dis1[S]=0;
    	   queue<int> Q;while(!Q.empty())Q.pop();
    	   Q.push(S);
    	   while(!Q.empty())
    	   {
    	   	      int u=Q.front();Q.pop();
    	   	      vis[u]=false;
    	   	      for(int i=h[u];i;i=e[i].next)
    	   	      {
    	   	      	    int v=e[i].v,w=e[i].w;
    	   	      	    if(dis1[v]>dis1[u]+w)
    					{
    						    dis1[v]=dis1[u]+w;
    						    if(!vis[v])
    						    {
    						    	  vis[v]=true;
    						    	  Q.push(v);
    						    }
    					}
    	   	      }
    	   }
    }
    void SPFA2()
    {
    	   for(int i=1;i<=N;++i)vis[i]=false;
    	   for(int i=1;i<=N;++i)dis2[i]=INF;
    	   dis2[T]=0;
    	   queue<int> Q;while(!Q.empty())Q.pop();
    	   Q.push(T);
    	   while(!Q.empty())
    	   {
    	   	      int u=Q.front();Q.pop();
    	   	      vis[u]=false;
    	   	      for(int i=H[u];i;i=E[i].next)
    	   	      {
    	   	      	    int v=E[i].v,w=E[i].w;
    	   	      	    if(dis2[v]>dis2[u]+w)
    					{
    						    dis2[v]=dis2[u]+w;
    						    if(!vis[v])
    						    {
    						    	  vis[v]=true;
    						    	  Q.push(v);
    						    }
    					}
    	   	      }
    	   }
    }
    inline void ReAdd(int u,int v,int w)
    {
    	   ee[cntt]=(edge){v,hh[u],w,cnt+1};
    	   hh[u]=cntt++;
    	   ee[cntt]=(edge){u,hh[v],0,cnt-1};
    	   hh[v]=cntt++;
    }
    inline void ReBuild()
    {
    	   for(int i=1;i<=N;++i)
    	   {
    	   	     for(int j=h[i];j;j=e[j].next)
    	   	     {
    	   	     	     if(dis1[i]+e[j].w+dis2[e[j].v]==dis1[T])
    	   	     	       ReAdd(i,e[j].v,1);
    	   	     }
    	   }
    }
    inline bool BFS()
    {
    	   for(int i=1;i<=N;++i)level[i]=0;
    	   level[S]=1;
    	   queue<int> Q;while(!Q.empty())Q.pop();
    	   Q.push(S);
    	   while(!Q.empty())
    	   {
    	   	     int u=Q.front();Q.pop();
    	   	     for(int i=hh[u];i;i=ee[i].next)
    	   	     {
    	   	     	     int v=ee[i].v;
    	   	     	     if(ee[i].w&&!level[v])
    	   	     	     {
    	   	     	     	     level[v]=level[u]+1;
    	   	     	     	     Q.push(v);
    	   	     	     }
    	   	     }
    	   	     
    	   }
    	   return level[T];
    }
    int DFS(int u,int f)
    {
    	   if(u==T||f==0)return f;
    	   int re=0;
    	   for(int i=hh[u];i;i=ee[i].next)
    	   {
    	   	       int v=ee[i].v;
    	   	       if(ee[i].w&&level[v]==level[u]+1)
    	   	       {
    	   	       	      int d=DFS(v,min(f,ee[i].w));
    	   	       		  f-=d;re+=d;
    					  ee[i].w-=d;ee[ee[i].fb].w+=d;	      
    	   	       }
    	   }
    	   return re;
    }
    inline int Dinic()
    {
    	   int re=0;
    	   while(BFS())
    	      re+=DFS(S,INF);
    	   return re;
    }
    int main()
    {
    	   int TT=read();
    	   while(TT--)
    	   {
    	   	       cnt=cntt=1;
    	   	       N=read();M=read();
    	   	       for(int i=1;i<=N;++i)h[i]=H[i]=hh[i]=0;
    	   	       for(int i=1;i<=M;++i)
    	   	       {
    	   	       	      int a=read(),b=read(),c=read();
    	   	       	      if(a!=b)
    	   	       	         Add(a,b,c);
    	   	       }
    	   	       S=read();T=read();
    	   	       SPFA1();
    	   	       SPFA2();
    	   	       ReBuild();
    	   	       printf("%d
    ",Dinic());
    	   }
    	   return 0;
    }
    
    
    
  • 相关阅读:
    C#中?、??与?:的使用
    循环的嵌套
    Linux中__init、__devinit等初始化宏
    AUPE学习第十章------信号
    C语言--const详解
    database is locked和SQLITE_BUSY
    vc6.0错误提示
    C/C++程序内存模型
    浅谈C中的malloc和free “来自bccn C语言论坛”
    Java几种内部类总结
  • 原文地址:https://www.cnblogs.com/cjyyb/p/7257315.html
Copyright © 2011-2022 走看看