min_25筛
用来干啥?
考虑一个积性函数(F(x)),用来快速计算前缀和$$sum_{i=1}^nF(i)$$
当然,这个积性函数要满足(F(x),xin Prime)可以用多项式表示
同时,(F(x^k),xin Prime)要能够快速计算答案
需要预处理的东西
先不考虑求前缀和的问题,考虑一个积性函数(F(x))
求解$$sum_{i=1}^n[iin Prime]F(i)$$
直接求我也会懵逼的,还是找一个函数来算算,假设(F(x)=x^k)
那么,求解$$sum_{i=1}^n[iin Prime]i^k$$
设(P)是质数集合,(P_i)表示第(i)个质数。
设$$g(n,j)=sum_{i=1}^ni^k[iin P or min(p)>P_j,p|i,pin P ]$$
你问我为什么不写中文?因为LaTex里面写中文太丑了
翻译成人话,(i)是质数,或者(i)的最小质因子大于(P_j)
我们考虑一下(g(n,j))这个函数可以怎么转移。
考虑第一种情况,如果(P_j^2>n),很明显,最小质因子是(P_j)的最小合数就是(P_j^2)
如果(P_j^2> n),显然不会产生新的贡献了,此时有(g(n,j)=g(n,j-1))
那么,如果(P_j^2le n)呢?
显然,从(P_{j-1})到(P_j),我们能够产生贡献的值变少了,因此我们要减去一些东西的值。
所以(g(n,j)=g(n,j-1)-X),考虑一下(X)是啥。
我们减去的贡献显然就是哪些最小质因子是(P_{j})的东西,所以前面有一个(P_{j}^k)的系数,
后面有还有一些东西。
现在因为所有数都分成了两个部分,一个是已经被提出来的(P_{j}),另外一部分是剩余的数。
考虑剩余的数的最小质因数,我们要减去的就是那些最小质因数仍然大于等于(P_{j})的那部分
所以容斥一下,先算上所有的含有(P_{j})这部分的贡献(g(frac{n}{P_{j}},j-1))
再减掉其他质数以及最小质因数小于(P_j)的那部分,也就是(g(P_j-1,j-1))
所以我们推出转移
把两个转移合并一下,就是
考虑一下(g(P_{j},j))的值?显然是$$sum_{i=1}^jP_j^k$$
我们要求的是什么?(g(n,|P|)),其中(|P|)是(Prime)集合的大小,也就是满足条件的质数的个数。
而我们根据上面的转移,发现需要的质数只有不大于(sqrt n)的,所以只需要筛出这些质数就好了。
我们来思考一下(g)函数所代表的含义,
我们可以理解为在模拟埃氏筛法的过程,
(g(n,j))表示([1,n])排成一列放在这里,但是你已经晒过一些质数了,
你把前(j)个质数的倍数全部划掉了,剩下的求个(F(x))的和就是(g)函数。
所以转移的过程可以理解为已经筛完了前(j-1)个质数,现在考虑删除第(j)个质数的过程。
看到这里一定会感觉上面十分的有道理,但是又有一些疑问。
在上面的计算过程中,始终只考虑了(lesqrt n)的质数,那么,那些(gtsqrt n)的质数呢?
其实,我们的(g)函数要计算的本来就只有质数的值,所以,我们的(g)函数算出来的结果并不是真正的结果。
还记得上面对于这类积性函数有什么要求吗?能够快速的计算(F(x),xin Prime)。
所以,我们先假设所有的数的计算方法都等同于质数的计算方法,所以我们可以快速的计算前缀和
也就是(g(n,0)),虽然这个值是假的。但是,如果(g)中只包含了质数的值的话,那么它的计算结果就是真正的结果。
因此,预处理(g)的过程,我们理解为一个计算所有质数的值的过程。
怎么算我们要的东西呢?
接着我们来考虑求积性函数的前缀和。
设$$S(n,j)=sum_{i=1}^nF(i)[min(p)ge P_j,pin P,p|i ]$$
后面的意思和上面是一样的,也就是所有最小质因数大于(P_j)的(i)的(F(i))之和
那么,(S(n,j))分为两个部分计算,一部分是所有质数的和,一部分是所有合数的和,(1)的值单独算一下。
所有质数的值显然可以用(g)表示出来,也就是(g(n,|P|)),当然,这里还需要考虑一下质数大小的限制
考虑合数部分的贡献。
枚举一下每个合数的最小质因子以及最小质因子的次幂,这样可以进行转移。
为什么?
因为(F(x))是一个积性函数,所以我们把它的最小质因数拆出来,考虑剩下部分然后再乘起来是没有问题的。
所以我们枚举他的最小质因数,然后只需要考虑除完之后剩下部分的答案就好了。
因为最小质因数已经被除完,所以剩下部分中不能再含有最小质因数。
同时,所有的(F(p_k^i))也被筛掉了,所以需要额外的补进来。
一个栗子
积性函数为(f(p^c)=poplus c,pin Prime)
我们来考虑质数的贡献,因为除(2)外的所有质数都是奇数,所以(f(p)=p-1)
而(f(2)=p+1=2+1=3)
我们先把所有的数的贡献都当做(p)来算,这样可以方便我们计算(g)的值。
再注意到一点,我们真正在计算(g(n,j))的时候,并不需要计算出所有的(n)值
我们发现每次转移的时候只与整除有关,所以考虑一下数论分块后的结果,
这样的值大约只有(2sqrt n)个,所以只需要这些数的值。我们可以预处理出来,然后存起来。
初值计算$$g(n,0)=sum_{i=2}^nf(i)$$
当然这里的(f(i))是“假的”(f(i)),也就是我们把所有的数都当成质数来计算
也就是(f(i)=i),所以求和的结果是(frac{n(n+1)}{2}-1)
然后我们看到上面的式子,还需要维护一下筛出来的质数的前缀(f(x))和,也就是(g(P_i-1,i))
这个的话我们在筛质数的时候直接维护一下就好了。
因为对于所有的质数,我们实际的(f(i))是(i-1),所以还需要维护一下质数的个数,
也就相当于维护一个积性函数(h(x)=1),和前面(g)函数一样的计算就行了。
接下来就表示成(h(n,j))了。
然后如何计算答案?
我们采用递归的方法,并且不需要记忆化
先考虑一下(S(n,j))的初值,也就是所有满足条件的质数的答案
这个答案是$$g(n,|P|)-sum_{i=1}^{j-1}(P_i-1)-h(n,|P|)$$
为啥?首先是所有质数的(f(x))的值,就是前面的(g)函数
然后因为最小的质数是(P_j),所以把小于(P_j)的质数的贡献给减掉
然后因为要计算的(f(x))是(x-1),所以还需要额外减那个(1),也就是质数的个数。
如果(j=1)的时候,(f(2)=3),但是在计算过程中我们算的是(f(2)=1),所以需要额外的加二
这样一来就差不多可以实现了。
代码戳这里