【BZOJ4522】密匙破解(Pollard_rho)
题面
题解
还是(Pollard\_rho)的模板题。
呜。。。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
inline ll read()
{
RG ll x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
ll e,N,c,r,d,n;
ll Multi(ll a,ll b,ll MOD)
{
ll s=0;
while(b){if(b&1)s=(s+a)%MOD;a=(a+a)%MOD;b>>=1;}
return s;
}
ll fpow(ll a,ll b,ll MOD)
{
ll s=1;
while(b){if(b&1)s=Multi(s,a,MOD);a=Multi(a,a,MOD);b>>=1;}
return s;
}
bool Miller_Rabin(ll x)
{
if(x==2)return true;
for(int tim=10;tim;--tim)
{
ll a=rand()%(x-2)+2;
if(fpow(a,x-1,x)!=1)return false;
ll p=x-1;
while(!(p&1))
{
p>>=1;ll nw=fpow(a,p,x);
if(Multi(nw,nw,x)==1&&nw!=1&&nw!=x-1)return false;
}
}
return true;
}
ll Pollard_rho(ll n,int c)
{
ll i=0,k=2,x=rand()%(n-1)+1,y=x;
while(233)
{
++i;x=(Multi(x,x,n)+c)%n;
ll d=__gcd((y+n-x)%n,n);
if(d!=1&&d!=n)return d;
if(x==y)return n;
if(i==k)y=x,k<<=1;
}
}
vector<ll> fac;
void Fact(ll n,int c)
{
if(n==1)return;
if(Miller_Rabin(n)){fac.push_back(n);return;}
ll p=n;while(p>=n)p=Pollard_rho(p,c--);
Fact(p,c);Fact(n/p,c);
}
void exgcd(ll a,ll b,ll &x,ll &y)
{
if(b==0){x=1;y=0;return;}
exgcd(b,a%b,y,x);
y-=Multi(a/b,x,r);y=(y%r+r)%r;
}
ll Inv(ll a,ll b)
{
ll x,y;exgcd(a,b,x,y);
x=(x%b+b)%b;return x;
}
int main()
{
e=read();N=read();c=read();Fact(N,233);
r=(fac[0]-1)*(fac[1]-1);
d=Inv(e,r);
n=fpow(c,d,N);
printf("%lld %lld
",d,n);
return 0;
}